Vaglietti Serena, Fiumara Ferdinando
Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino 10125, Italy.
NAR Genom Bioinform. 2021 May 14;3(2):lqab032. doi: 10.1093/nargab/lqab032. eCollection 2021 Jun.
Intermolecular co-evolution optimizes physiological performance in functionally related proteins, ultimately increasing molecular co-adaptation and evolutionary fitness. Polyglutamine (polyQ) repeats, which are over-represented in nervous system-related proteins, are increasingly recognized as length-dependent regulators of protein function and interactions, and their length variation contributes to intraspecific phenotypic variability and interspecific divergence. However, it is unclear whether polyQ repeat lengths evolve independently in each protein or rather co-evolve across functionally related protein pairs and networks, as in an integrated regulatory system. To address this issue, we investigated here the length evolution and co-evolution of polyQ repeats in clusters of functionally related and physically interacting neural proteins in Primates. We observed function-/disease-related polyQ repeat enrichment and evolutionary hypervariability in specific neural protein clusters, particularly in the neurocognitive and neuropsychiatric domains. Notably, these analyses detected extensive patterns of intermolecular polyQ length co-evolution in pairs and clusters of functionally related, physically interacting proteins. Moreover, they revealed both direct and inverse polyQ length co-variation in protein pairs, together with complex patterns of coordinated repeat variation in entire polyQ protein sets. These findings uncover a whole system of co-evolving polyQ repeats in neural proteins with direct implications for understanding polyQ-dependent phenotypic variability, neurocognitive evolution and neuropsychiatric disease pathogenesis.
分子间共同进化优化了功能相关蛋白质的生理性能,最终增强了分子共同适应性和进化适应性。聚谷氨酰胺(polyQ)重复序列在与神经系统相关的蛋白质中过度存在,越来越被认为是蛋白质功能和相互作用的长度依赖性调节因子,其长度变化有助于种内表型变异和种间差异。然而,尚不清楚polyQ重复序列长度是在每种蛋白质中独立进化,还是像在一个整合的调节系统中那样,在功能相关的蛋白质对和网络中共同进化。为了解决这个问题,我们在此研究了灵长类动物中功能相关且物理相互作用的神经蛋白质簇中polyQ重复序列的长度进化和共同进化。我们在特定的神经蛋白质簇中观察到与功能/疾病相关的polyQ重复序列富集和进化高变异性,特别是在神经认知和神经精神领域。值得注意的是,这些分析在功能相关、物理相互作用的蛋白质对和簇中检测到广泛的分子间polyQ长度共同进化模式。此外,它们揭示了蛋白质对中polyQ长度的直接和反向共变,以及整个polyQ蛋白质组中复杂的协调重复变异模式。这些发现揭示了神经蛋白质中共同进化的polyQ重复序列的整个系统,对理解polyQ依赖性表型变异、神经认知进化和神经精神疾病发病机制具有直接意义。