Suppr超能文献

Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an 'in vitro' study.

作者信息

Janigro D, Schwartzkroin P A

机构信息

Department of Neurological Surgery, University of Washington, Seattle 98195.

出版信息

Brain Res. 1988 Jun 1;469(1-2):171-84. doi: 10.1016/0165-3806(88)90180-0.

Abstract

Using the in vitro hippocampal slice preparation, we have investigated the effects of gamma-aminobutyric acid (GABA) and its analogue beta-(p-chlorophenyl)-GABA (baclofen) on CA1 and CA3 pyramidal cells in the developing rabbit hippocampus. Somatic applications: both GABA and baclofen, when applied to CA1 pyramidal cells from immature tissue, led to cell depolarization from resting membrane potential; this baclofen depolarization may be indirectly mediated. In contrast, CA3 pyramidal cells at the same age were primarily hyperpolarized by both drugs. In mature tissue, both GABA and baclofen applied at the soma induce cell hyperpolarizations. Dendritic applications: immature CA1 cells responded to dendritic GABA and baclofen application with depolarizations associated with increased cell excitability; here, too, the baclofen depolarization may be due to indirect 'disinhibition'. Both depolarizing and hyperpolarizing responses were recorded in immature tissue when GABA was applied to CA3 pyramidal cell dendrites: baclofen produced only hyperpolarizations. In mature CA1 cells, dendritic GABA application produced membrane depolarization, but dendritic baclofen application produced hyperpolarizations. In mature CA3 cells, dendritic GABA and baclofen application produced predominant hyperpolarizations. Mature CA1 pyramidal cells appear to retain some of the GABA-induced depolarizations characteristic of immature tissue. In contrast, mature CA3 neurons show only hyperpolarizing responses to GABA and baclofen application. In all cases, responses to GABA and baclofen are associated with a decrease in cell input resistance. We conclude that the GABAergic receptor/channel complexes mature differently in the CA1 and CA3 regions of the hippocampus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验