Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Small. 2021 Jun;17(25):e2100956. doi: 10.1002/smll.202100956. Epub 2021 May 21.
Printed electronics are expected to facilitate the widespread distributed wearable electronics in the era of the Internet of things. However, developing cheap and stable electrode inks remains a significant challenge in the printed electronics industry and academic community. Here, overcoming the weak hydrophilicity of polyaniline, a low-cost, easy-fabricating, and air-stable conducting polymer (CP) ink is devised through a facile assemble-disperse strategy delivering a high conductivity in the order of 10 S cm along with a remarkable specific capacitance of 386.9 F g at 0.5 A g (dehydrated state). The additive-free CP ink is directly employed to print wearable micro-supercapacitors (MSCs) via the spray-coating method, which deliver a high areal capacitance (96.6 mF cm ) and volumetric capacitance (26.0 F cm ), outperforming most state-of-the-art CP-based supercapacitors. This work paves a new approach for achieving scalable MSCs, thus rendering a cost-effective, environmentally friendly, and pervasive energy solution for next-generation distributed electronics.
印刷电子产品有望在物联网时代促进广泛分布的可穿戴电子产品的发展。然而,开发廉价且稳定的电极墨水仍然是印刷电子行业和学术界的一个重大挑战。在这里,通过一种简便的组装-分散策略克服了聚苯胺的低亲水性,该策略设计了一种低成本、易于制造且空气稳定的导电聚合物 (CP) 墨水,其电导率高达 10 S cm,在 0.5 A g 下具有显著的比电容 386.9 F g(脱水状态)。无添加剂的 CP 墨水可通过喷涂法直接用于印刷可穿戴微超级电容器 (MSC),其面电容 (96.6 mF cm ) 和体电容 (26.0 F cm ) 较高,超过了大多数最先进的基于 CP 的超级电容器。这项工作为实现可扩展的 MSC 铺平了道路,从而为下一代分布式电子设备提供了一种具有成本效益、环保且普及的能源解决方案。