Suppr超能文献

纳米尺度下热力学循环的自主实现

Autonomous Implementation of Thermodynamic Cycles at the Nanoscale.

作者信息

Strasberg Philipp, Wächtler Christopher W, Schaller Gernot

机构信息

Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

Institut für Theoretische Physik, Sekretariat EW 7-1, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.

出版信息

Phys Rev Lett. 2021 May 7;126(18):180605. doi: 10.1103/PhysRevLett.126.180605.

Abstract

There are two paradigms to study nanoscale engines in stochastic and quantum thermodynamics. Autonomous models, which do not rely on any external time dependence, and models that make use of time-dependent control fields, often combined with dividing the control protocol into idealized strokes of a thermodynamic cycle. While the latter paradigm offers theoretical simplifications, its utility in practice has been questioned due to the involved approximations. Here, we bridge the two paradigms by constructing an autonomous model, which implements a thermodynamic cycle in a certain parameter regime. This effect is made possible by self-oscillations, realized in our model by the well-studied electron shuttling mechanism. Based on experimentally realistic values, we find that a thermodynamic cycle analysis for a single-electron working fluid is not justified, but a few-electron working fluid could suffice to justify it. Furthermore, additional open challenges remain to autonomously implement the more studied Carnot and Otto cycles.

摘要

在随机和量子热力学中,有两种研究纳米级引擎的范式。一种是自主模型,它不依赖于任何外部时间依赖性;另一种是利用时间相关控制场的模型,这种模型通常会结合将控制协议划分为热力学循环的理想化冲程。虽然后一种范式提供了理论上的简化,但由于其中涉及的近似,其在实际中的效用受到了质疑。在这里,我们通过构建一个自主模型来弥合这两种范式,该模型在特定参数范围内实现了一个热力学循环。这种效应是通过自振荡实现的,在我们的模型中,自振荡是通过研究充分的电子穿梭机制实现的。基于实验现实值,我们发现对单电子工作流体进行热力学循环分析是不合理的,但少数电子的工作流体可能足以证明其合理性。此外,自主实现研究较多的卡诺循环和奥托循环仍然面临其他开放挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验