Suppr超能文献

基于 GIS 的逻辑评分偏好法对濒危虎鲸(Orcinus orca)的声避难所适宜性分析。

Suitability Analysis of Acoustic Refugia for Endangered Killer Whales (Orcinus orca) Using the GIS-based Logic Scoring of Preference Method.

机构信息

Spatial Analysis and Modeling Laboratory, Department of Geography, Simon Fraser University, Burnaby, BC, Canada.

出版信息

Environ Manage. 2021 Aug;68(2):262-278. doi: 10.1007/s00267-021-01481-y. Epub 2021 May 21.

Abstract

An emerging priority in marine noise pollution research is identifying marine "acoustic refugia" where noise levels are relatively low and good-quality habitat is available to acoustically sensitive species. The endangered Southern Resident population of killer whales (Orcinus orca) that inhabits the transboundary Salish Sea in Canada and the USA are affected by noise pollution. Geographic Information Systems (GIS) and spatial multicriteria evaluation (MCE) methods have been used to operationalize suitability analysis in ecology and conservation for site selection problems. However, commonly used methods lack the ability to represent complex logical relationships between input criteria. Therefore, the objective of this study is to apply a more advanced MCE method, known as Logic Scoring of Preference (LSP), to identify acoustic refugia for killer whales in the Salish Sea. This GIS-based LSP-MCE approach considers multiple input criteria by combining input data representing killer whale habitat requirements with noise pollution and other factors to identify suitable acoustic refugia. The results indicate the locations of suitable acoustic refugia and how they are affected by noise pollution from marine vessels in three scenarios developed to represent different levels of vessel traffic. Identifying acoustic refugia can contribute to efforts to reduce the effect of marine noise pollution on killer whale populations by highlighting high-priority areas in which to implement policies such as traffic-limiting measures or marine protected areas. Moreover, the proposed LSP-MCE procedure combines criteria in a stepwise manner that can support environmental management decision-making processes and can be applied to other marine suitability analysis contexts.

摘要

海洋噪声污染研究中的一个新重点是确定海洋“声避难所”,在这些地方,噪声水平相对较低,并且有高质量的栖息地可供声敏感物种使用。栖息在加拿大和美国跨界的萨利什海的濒危南方居民虎鲸(Orcinus orca)受到噪声污染的影响。地理信息系统 (GIS) 和空间多标准评估 (MCE) 方法已被用于生态学和保护学中的适宜性分析,以解决选址问题。然而,常用的方法缺乏表示输入标准之间复杂逻辑关系的能力。因此,本研究的目的是应用一种更先进的 MCE 方法,称为偏好逻辑评分 (LSP),来确定萨利什海虎鲸的声避难所。这种基于 GIS 的 LSP-MCE 方法通过将代表虎鲸栖息地需求的输入数据与噪声污染和其他因素相结合,考虑多个输入标准,以确定合适的声避难所。结果表明了在三种情况下适合的声避难所的位置以及它们如何受到来自船只的噪声污染的影响,这三种情况代表了不同水平的船只交通。确定声避难所有助于减少海洋噪声污染对虎鲸种群的影响,突出了实施交通限制措施或海洋保护区等政策的高优先级区域。此外,所提出的 LSP-MCE 程序以逐步的方式组合标准,这可以支持环境管理决策过程,并可应用于其他海洋适宜性分析的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验