Sharna Sharmin, Bahri Mounib, Bouillet Corinne, Rouchon Virgile, Lambert Arnold, Gay Anne-Sophie, Chiche David, Ersen Ovidiu
IFP Energies Nouvelles, Rond-Point de l'échangeur de Solaize, 69360 Solaize, France.
Nanoscale. 2021 Jun 3;13(21):9747-9756. doi: 10.1039/d1nr01648b.
Despite the broad relevance of copper nanoparticles in industrial applications, the fundamental understanding of oxidation and reduction of copper at the nanoscale is still a matter of debate and remains within the realm of bulk or thin film-based systems. Moreover, the reported studies on nanoparticles vary widely in terms of experimental parameters and are predominantly carried out using either ex situ observation or environmental transmission electron microscopy in a gaseous atmosphere at low pressure. Hence, dedicated studies in regards to the morphological transformations and structural transitions of copper-based nanoparticles at a wider range of temperatures and under industrially relevant pressure would provide valuable insights to improve the application-specific material design. In this paper, copper nanoparticles are studied using in situ Scanning Transmission Electron Microscopy to discern the transformation of the nanoparticles induced by oxidative and reductive environments at high temperatures. The nanoparticles were subjected to a temperature of 150 °C to 900 °C at 0.5 atm partial pressure of the reactive gas, which resulted in different modes of copper mobility both within the individual nanoparticles and on the surface of the support. Oxidation at an incremental temperature revealed the dependency of the nanoparticles' morphological evolution on their initial size as well as reaction temperature. After the formation of an initial thin layer of oxide, the nanoparticles evolved to form hollow oxide shells. The kinetics of formation of hollow particles were simulated using a reaction-diffusion model to determine the activation energy of diffusion and temperature-dependent diffusion coefficient of copper in copper oxide. Upon further temperature increase, the hollow shell collapsed to form compact and facetted nanoparticles. Reduction of copper oxide was carried out at different temperatures starting from various oxide phase morphologies. A reduction mechanism is proposed based on the dynamic of the reduction-induced fragmentation of the oxide phase. In a broader perspective, this study offers insights into the mobility of the copper phase during its oxidation-reduction process in terms of microstructural evolution as a function of nanoparticle size, reaction gas, and temperature.
尽管铜纳米颗粒在工业应用中具有广泛的相关性,但对纳米尺度下铜的氧化和还原的基本理解仍存在争议,且仍局限于基于块状或薄膜的体系范畴。此外,已报道的关于纳米颗粒的研究在实验参数方面差异很大,并且主要是在低压气态气氛中使用非原位观察或环境透射电子显微镜进行的。因此,针对更广泛温度范围和工业相关压力下铜基纳米颗粒的形态转变和结构转变进行专门研究,将为改进特定应用的材料设计提供有价值的见解。在本文中,使用原位扫描透射电子显微镜研究铜纳米颗粒,以识别高温下氧化和还原环境诱导的纳米颗粒转变。纳米颗粒在反应气体分压为0.5个大气压的条件下,温度范围为150℃至900℃,这导致了单个纳米颗粒内部以及载体表面铜的不同迁移模式。在逐渐升高的温度下进行氧化,揭示了纳米颗粒形态演变对其初始尺寸以及反应温度的依赖性。在形成初始薄氧化层后,纳米颗粒演变成空心氧化壳。使用反应扩散模型模拟空心颗粒的形成动力学,以确定铜在氧化铜中的扩散活化能和温度依赖性扩散系数。随着温度进一步升高,空心壳坍塌形成致密且多面的纳米颗粒。从各种氧化物相形态开始,在不同温度下进行氧化铜的还原。基于还原诱导的氧化物相破碎动力学提出了一种还原机制。从更广泛的角度来看,这项研究从微观结构演变的角度,就纳米颗粒尺寸、反应气体和温度的函数关系,提供了对铜相在其氧化还原过程中迁移率的见解。