Cao Pengfei, Tang Pengyi, Bekheet Maged F, Du Hongchu, Yang Luyan, Haug Leander, Gili Albert, Bischoff Benjamin, Gurlo Aleksander, Kunz Martin, Dunin-Borkowski Rafal E, Penner Simon, Heggen Marc
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany.
J Phys Chem C Nanomater Interfaces. 2022 Jan 13;126(1):786-796. doi: 10.1021/acs.jpcc.1c09257. Epub 2021 Dec 30.
Using a combination of bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO perovskite material during heating . Driven by the outstanding activity LaNiO in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO during DRM operation into a Ni//LaO composite, we reveal the Ni exsolution dynamics both on a local and global scale by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO via a Ruddlesden-Popper LaNiO intermediate structure. Exemplified for the archetypical LaNiO perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.
通过结合使用体相和表面表征技术,我们对钙钛矿材料LaNiO在加热过程中的复杂表面和体相动力学进行了原子尺度的洞察。由于LaNiO在甲烷干重整反应(DRM)中表现出卓越的活性,这归因于DRM操作过程中LaNiO分解为Ni//LaO复合材料,我们通过电子显微镜、X射线衍射和X射线光电子能谱揭示了局部和全局尺度上的Ni析出动力学。为了降低复杂性并将热效应与自激活效应和反应诱导效应区分开来,我们在所有方法中均在可比的实验条件下进行了真空加热实验。与Ni析出相关,剩余的钙钛矿晶粒经历了晶粒体积的急剧收缩和结构的压缩。Ni颗粒主要在晶界和堆垛层错处形成。通过电子能量损失映射对元素组成进行复杂的结构分析,使我们能够在局部尺度上区分由LaNiO分解产生的不同结构的分布。对解释DRM活性很重要的是,我们的结果表明大多数Ni部分被氧化,并且NiO的形成优先发生在晶粒边缘,这是由于析出的Ni颗粒与分解过程中从钙钛矿晶格释放的氧通过从钙钛矿到Ni颗粒 的溢流过程反应所致。将电子显微镜和X射线衍射数据相关联,使我们能够通过Ruddlesden-Popper LaNiO中间结构建立LaNiO分解的连续两步过程。以典型的LaNiO钙钛矿材料为例,我们的结果强调了关注表面和体相表征对于全面理解催化剂动力学的重要性,并为在原子水平上理解先进催化剂材料的广义概念奠定了基础。