Schäfer Richard A, Voß Björn
University of Stuttgart, Computational Biology, Institute of Biochemical Engineering, Allmandring 31, 70569 Stuttgart, Germany.
Nucleic Acids Res. 2021 Jun 4;49(10):5493-5501. doi: 10.1093/nar/gkab340.
RNA-RNA inter- and intramolecular interactions are fundamental for numerous biological processes. While there are reasonable approaches to map RNA secondary structures genome-wide, understanding how different RNAs interact to carry out their regulatory functions requires mapping of intermolecular base pairs. Recently, different strategies to detect RNA-RNA duplexes in living cells, so called direct duplex detection (DDD) methods, have been developed. Common to all is the Psoralen-mediated in vivo RNA crosslinking followed by RNA Proximity Ligation to join the two interacting RNA strands. Sequencing of the RNA via classical RNA-seq and subsequent specialised bioinformatic analyses the result in the prediction of inter- and intramolecular RNA-RNA interactions. Existing approaches adapt standard RNA-seq analysis pipelines, but often neglect inherent features of RNA-RNA interactions that are useful for filtering and statistical assessment. Here we present RNAnue, a general pipeline for the inference of RNA-RNA interactions from DDD experiments that takes into account hybridisation potential and statistical significance to improve prediction accuracy. We applied RNAnue to data from different DDD studies and compared our results to those of the original methods. This showed that RNAnue performs better in terms of quantity and quality of predictions.
RNA与RNA之间的分子间和分子内相互作用是众多生物过程的基础。虽然有合理的方法可在全基因组范围内绘制RNA二级结构,但要了解不同RNA如何相互作用以执行其调控功能,则需要绘制分子间碱基对。最近,已开发出不同的策略来检测活细胞中的RNA-RNA双链体,即所谓的直接双链体检测(DDD)方法。所有方法的共同点是补骨脂素介导的体内RNA交联,随后进行RNA邻近连接以连接两条相互作用的RNA链。通过经典RNA测序对RNA进行测序,并随后进行专门的生物信息学分析,结果可预测分子间和分子内的RNA-RNA相互作用。现有方法采用标准的RNA测序分析流程,但往往忽略了对过滤和统计评估有用的RNA-RNA相互作用的固有特征。在此,我们介绍了RNAnue,这是一种用于从DDD实验推断RNA-RNA相互作用的通用流程,它考虑了杂交潜力和统计显著性以提高预测准确性。我们将RNAnue应用于来自不同DDD研究的数据,并将我们的结果与原始方法的结果进行比较。这表明RNAnue在预测的数量和质量方面表现更好。