文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

银纳米颗粒的表面化学依赖性抗病毒活性。

Surface chemistry-dependent antiviral activity of silver nanoparticles.

作者信息

Sinclair Terica R, van den Hengel Sanne K, Raza Brahzil G, Rutjes Saskia A, de Roda Husman Ana Maria, Peijnenburg Willie J G M, Roesink H Erik D W, de Vos Wiebe M

机构信息

Membrane Science & Technology, MESA + Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands.

Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.

出版信息

Nanotechnology. 2021 Jun 17;32(36). doi: 10.1088/1361-6528/ac03d6.


DOI:10.1088/1361-6528/ac03d6
PMID:34020439
Abstract

The toxicity towards viruses of silver nanoparticles (AgNPs) has been reported to be dependent on several factors such as particle concentration, size, and shape. Although these factors may indeed contribute to the toxicity of AgNPs, the results presented in this work demonstrate that surface chemistry and especially surface charge is a crucial factor governing their antiviral activity. Here, this work investigated the influence of capping agents representing various surface charges ranging from negative to positive. These AgNPs were capped with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) mercaptoacetic acid (MAA) and (branched polyethyleneimine (BPEI). We show that AgNPs exhibited surface charge-dependent toxicity towards MS2 bacteriophages. Among the capping agents under investigation, BPEI capped AgNPs (Ag/BPEI) exhibited the highest reduction of MS2 resulting in ≥6 log-units reductions, followed by 4-5 log-units reductions with PVP and PEG capping's and 3-4 log-units with MAA and citrate cappings. Bare nanoparticles reported a mere 1-2 log-units reduction. Electrostatic interaction between the positively charged BPEI-coating and the negatively charged virus surface played a significant role in bringing the MS2 closer to toxic silver ions (Ag). Further results obtained from TEM showed that Ag/BPEI nanoparticles could directly damage the structure of the MS2 bacteriophages. AgNPs and cationic capping agents' observed synergy can lead to much lower and much more efficient dosing of AgNPs for antiviral applications.

摘要

据报道,银纳米颗粒(AgNPs)对病毒的毒性取决于几个因素,如颗粒浓度、大小和形状。尽管这些因素确实可能导致AgNPs的毒性,但本研究结果表明,表面化学,尤其是表面电荷是决定其抗病毒活性的关键因素。在此,本研究调查了代表从负电荷到正电荷的各种表面电荷的封端剂的影响。这些AgNPs用柠檬酸盐、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、巯基乙酸(MAA)和(支化聚乙烯亚胺(BPEI)进行封端。我们表明,AgNPs对MS2噬菌体表现出表面电荷依赖性毒性。在所研究的封端剂中,BPEI封端的AgNPs(Ag/BPEI)对MS2的减少率最高,导致减少≥6个对数单位,其次是PVP和PEG封端时减少4-5个对数单位,MAA和柠檬酸盐封端时减少3-4个对数单位。裸纳米颗粒的减少率仅为1-2个对数单位。带正电荷的BPEI涂层与带负电荷的病毒表面之间的静电相互作用在使MS2更接近有毒银离子(Ag)方面发挥了重要作用。从透射电子显微镜获得的进一步结果表明,Ag/BPEI纳米颗粒可直接破坏MS2噬菌体的结构。观察到的AgNPs与阳离子封端剂的协同作用可导致在抗病毒应用中使用更低剂量且更有效的AgNPs。

相似文献

[1]
Surface chemistry-dependent antiviral activity of silver nanoparticles.

Nanotechnology. 2021-6-17

[2]
Anaerobic toxicity of cationic silver nanoparticles.

Sci Total Environ. 2016-3-24

[3]
Surface charge-dependent toxicity of silver nanoparticles.

Environ Sci Technol. 2010-12-6

[4]
Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration.

Nanotoxicology. 2016

[5]
Teratogenic hazard of BPEI-coated silver nanoparticles to Xenopus laevis.

Nanotoxicology. 2017-4

[6]
Toxicity of differently sized and charged silver nanoparticles to yeast BY4741: a nano-biointeraction perspective.

Nanotoxicology. 2019-6-20

[7]
Transformation and Cytotoxicity of Surface-Modified Silver Nanoparticles Undergoing Long-Term Aging.

Nanomaterials (Basel). 2020-11-13

[8]
Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.

Environ Sci Technol. 2010-2-15

[9]
Key factors controlling the transport of silver nanoparticles in porous media.

Environ Sci Technol. 2013-4-19

[10]
Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA) on Testing for Surface-Coated Silver Nanoparticles.

Int J Environ Res Public Health. 2015-7-15

引用本文的文献

[1]
Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes.

Toxics. 2025-6-27

[2]
Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review.

Molecules. 2025-4-30

[3]
Silver Nanoparticles: A Versatile Tool Against Infectious and Non-Infectious Diseases.

Antibiotics (Basel). 2025-3-11

[4]
Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives.

Nanomaterials (Basel). 2025-1-27

[5]
A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications.

Heliyon. 2025-1-8

[6]
-assisted silver nanoparticles synthesis and evaluation of its antibacterial activity.

Syst Microbiol Biomanuf. 2023-4-4

[7]
The shape-dependent inhibitory effect of rhein/silver nanocomposites on porcine reproductive and respiratory syndrome virus.

Discov Nano. 2023-10-10

[8]
Mechanism of Action and Efficiency of AgPO-Based Photocatalysts for the Control of Hazardous Gram-Positive Pathogens.

Int J Mol Sci. 2023-8-31

[9]
Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications.

Microorganisms. 2023-2-28

[10]
Toxicity of metal-based nanoparticles: Challenges in the nano era.

Front Bioeng Biotechnol. 2022-11-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索