Sinclair Terica R, van den Hengel Sanne K, Raza Brahzil G, Rutjes Saskia A, de Roda Husman Ana Maria, Peijnenburg Willie J G M, Roesink H Erik D W, de Vos Wiebe M
Membrane Science & Technology, MESA + Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands.
Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.
Nanotechnology. 2021 Jun 17;32(36). doi: 10.1088/1361-6528/ac03d6.
The toxicity towards viruses of silver nanoparticles (AgNPs) has been reported to be dependent on several factors such as particle concentration, size, and shape. Although these factors may indeed contribute to the toxicity of AgNPs, the results presented in this work demonstrate that surface chemistry and especially surface charge is a crucial factor governing their antiviral activity. Here, this work investigated the influence of capping agents representing various surface charges ranging from negative to positive. These AgNPs were capped with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) mercaptoacetic acid (MAA) and (branched polyethyleneimine (BPEI). We show that AgNPs exhibited surface charge-dependent toxicity towards MS2 bacteriophages. Among the capping agents under investigation, BPEI capped AgNPs (Ag/BPEI) exhibited the highest reduction of MS2 resulting in ≥6 log-units reductions, followed by 4-5 log-units reductions with PVP and PEG capping's and 3-4 log-units with MAA and citrate cappings. Bare nanoparticles reported a mere 1-2 log-units reduction. Electrostatic interaction between the positively charged BPEI-coating and the negatively charged virus surface played a significant role in bringing the MS2 closer to toxic silver ions (Ag). Further results obtained from TEM showed that Ag/BPEI nanoparticles could directly damage the structure of the MS2 bacteriophages. AgNPs and cationic capping agents' observed synergy can lead to much lower and much more efficient dosing of AgNPs for antiviral applications.
据报道,银纳米颗粒(AgNPs)对病毒的毒性取决于几个因素,如颗粒浓度、大小和形状。尽管这些因素确实可能导致AgNPs的毒性,但本研究结果表明,表面化学,尤其是表面电荷是决定其抗病毒活性的关键因素。在此,本研究调查了代表从负电荷到正电荷的各种表面电荷的封端剂的影响。这些AgNPs用柠檬酸盐、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、巯基乙酸(MAA)和(支化聚乙烯亚胺(BPEI)进行封端。我们表明,AgNPs对MS2噬菌体表现出表面电荷依赖性毒性。在所研究的封端剂中,BPEI封端的AgNPs(Ag/BPEI)对MS2的减少率最高,导致减少≥6个对数单位,其次是PVP和PEG封端时减少4-5个对数单位,MAA和柠檬酸盐封端时减少3-4个对数单位。裸纳米颗粒的减少率仅为1-2个对数单位。带正电荷的BPEI涂层与带负电荷的病毒表面之间的静电相互作用在使MS2更接近有毒银离子(Ag)方面发挥了重要作用。从透射电子显微镜获得的进一步结果表明,Ag/BPEI纳米颗粒可直接破坏MS2噬菌体的结构。观察到的AgNPs与阳离子封端剂的协同作用可导致在抗病毒应用中使用更低剂量且更有效的AgNPs。
Nanotechnology. 2021-6-17
Sci Total Environ. 2016-3-24
Environ Sci Technol. 2010-12-6
Nanotoxicology. 2017-4
Nanomaterials (Basel). 2020-11-13
Environ Sci Technol. 2013-4-19
Antibiotics (Basel). 2025-3-11
Nanomaterials (Basel). 2025-1-27
Syst Microbiol Biomanuf. 2023-4-4
Microorganisms. 2023-2-28
Front Bioeng Biotechnol. 2022-11-10