Suppr超能文献

在 DREAM 单细胞转录组挑战赛中预测细胞位置的获胜方法。

The winning methods for predicting cellular position in the DREAM single-cell transcriptomics challenge.

机构信息

University of South Australia.

Applied Artificial Intelligence Institute (A2I2) at Deakin University.

出版信息

Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa181.

Abstract

MOTIVATION

Predicting cell locations is important since with the understanding of cell locations, we may estimate the function of cells and their integration with the spatial environment. Thus, the DREAM challenge on single-cell transcriptomics required participants to predict the locations of single cells in the Drosophila embryo using single-cell transcriptomic data.

RESULTS

We have developed over 50 pipelines by combining different ways of preprocessing the RNA-seq data, selecting the genes, predicting the cell locations and validating predicted cell locations, resulting in the winning methods which were ranked second in sub-challenge 1, first in sub-challenge 2 and third in sub-challenge 3. In this paper, we present an R package, SCTCwhatateam, which includes all the methods we developed and the Shiny web application to facilitate the research on single-cell spatial reconstruction. All the data and the example use cases are available in the Supplementary data.

摘要

动机

预测细胞位置很重要,因为通过了解细胞位置,我们可以估计细胞的功能及其与空间环境的整合。因此,DREAM 单细胞转录组学挑战赛要求参与者使用单细胞转录组数据预测果蝇胚胎中单细胞的位置。

结果

我们通过结合不同的 RNA-seq 数据预处理方式、选择基因、预测细胞位置和验证预测细胞位置,开发了 50 多种方法,从而在子挑战 1 中排名第二、子挑战 2 中排名第一、子挑战 3 中排名第三的方法。在本文中,我们介绍了一个 R 包 SCTCwhatateam,其中包含了我们开发的所有方法以及 Shiny 网络应用程序,以方便单细胞空间重建的研究。所有的数据和示例用例都可以在补充数据中找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验