Suppr超能文献

用于转录本分布预测和细胞类型反卷积的空间和单细胞转录组学整合方法的基准测试

Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.

作者信息

Li Bin, Zhang Wen, Guo Chuang, Xu Hao, Li Longfei, Fang Minghao, Hu Yinlei, Zhang Xinye, Yao Xinfeng, Tang Meifang, Liu Ke, Zhao Xuetong, Lin Jun, Cheng Linzhao, Chen Falai, Xue Tian, Qu Kun

机构信息

Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.

出版信息

Nat Methods. 2022 Jun;19(6):662-670. doi: 10.1038/s41592-022-01480-9. Epub 2022 May 16.

Abstract

Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets.

摘要

空间转录组学方法极大地提升了我们检测组织中RNA转录本空间分布的能力,但要在空间层面表征单个细胞的全转录组水平数据仍具有挑战性。为满足这一需求,研究人员开发了整合方法,将空间转录组数据与单细胞RNA测序数据相结合,以预测未检测到的转录本的空间分布和/或对组织切片中的斑点进行细胞类型反卷积分析。然而,迄今为止,尚无独立研究对这些整合方法进行比较分析以评估其性能。在此,我们使用45个配对数据集(包括空间转录组学和单细胞RNA测序数据)和32个模拟数据集对16种整合方法进行了基准测试。我们发现,Tangram、gimVI和SpaGE在预测RNA转录本的空间分布方面优于其他整合方法,而Cell2location、SpatialDWLS和RCTD是斑点细胞类型反卷积分析中表现最佳的方法。我们提供了一个基准测试流程,以帮助研究人员选择最佳的整合方法来处理他们的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验