Department of Biochemistry, University of Illinois at Urbana-Champaign, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, Illinois.
Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York.
Mol Cancer Res. 2021 Sep;19(9):1559-1570. doi: 10.1158/1541-7786.MCR-20-1017. Epub 2021 May 21.
Although most primary estrogen receptor (ER)-positive breast cancers respond well to endocrine therapies, many relapse later as metastatic disease due to endocrine therapy resistance. Over one third of these are associated with mutations in the ligand-binding domain (LBD) that activate the receptor independent of ligand. We have used an array of advanced computational techniques rooted in molecular dynamics simulations, in concert with and validated by experiments, to characterize the molecular mechanisms by which specific acquired somatic point mutations give rise to ER constitutive activation. By comparing structural and energetic features of constitutively active mutants and ligand-bound forms of ER-LBD with unliganded wild-type (WT) ER, we characterize a spring force originating from strain in the Helix 11-12 loop of WT-ER, opposing folding of Helix 12 into the active conformation and keeping WT-ER off and disordered, with the ligand-binding pocket open for rapid ligand binding. We quantify ways in which this spring force is abrogated by activating mutations that latch (Y537S) or relax (D538G) the folded form of the loop, enabling formation of the active conformation without ligand binding. We also identify a new ligand-mediated hydrogen-bonding network that stabilizes the active, ligand-bound conformation of WT-ER LBD, and similarly stabilizes the active conformation of the ER mutants in the hormone-free state. IMPLICATIONS: Our investigations provide deep insight into the energetic basis for the structural mechanisms of receptor activation through mutation, exemplified here with ER in endocrine-resistant metastatic breast cancers, with potential application to other dysregulated receptor signaling due to driver mutations.
虽然大多数原发性雌激素受体 (ER) 阳性乳腺癌对内分泌治疗有很好的反应,但由于内分泌治疗耐药,许多患者后来仍会复发为转移性疾病。其中超过三分之一与配体结合域 (LBD) 中的突变有关,这些突变可独立于配体激活受体。我们使用了一系列基于分子动力学模拟的先进计算技术,结合并通过实验验证,来描述特定获得性体细胞点突变导致 ER 组成型激活的分子机制。通过比较组成型激活突变体和配体结合形式的 ER-LBD 与未配体结合的野生型 (WT) ER 的结构和能量特征,我们描述了一种源自 WT-ER 螺旋 11-12 环中的应变的弹簧力,该力抵抗螺旋 12 折叠成活性构象并使 WT-ER 保持非折叠状态和无序状态,配体结合口袋张开以便快速配体结合。我们定量描述了这种弹簧力如何被激活突变所消除,这些突变使环的折叠形式锁定(Y537S)或放松(D538G),从而在没有配体结合的情况下形成活性构象。我们还确定了一种新的配体介导的氢键网络,该网络稳定 WT-ER LBD 的活性配体结合构象,并以类似的方式稳定无激素状态下 ER 突变体的活性构象。意义:我们的研究深入了解了通过突变导致受体激活的结构机制的能量基础,这里以内分泌抵抗转移性乳腺癌中的 ER 为例,可能适用于其他由于驱动突变导致的失调受体信号。