Savary Lucile
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, CNRS, Laboratoire de physique, Lyon, France.
Nat Commun. 2021 May 21;12(1):3004. doi: 10.1038/s41467-021-23033-y.
The search for truly quantum phases of matter is a center piece of modern research in condensed matter physics. Quantum spin liquids, which host large amounts of entanglement-an entirely quantum feature where one part of a system cannot be measured without modifying the rest-are exemplars of such phases. Here, we devise a realistic model which relies upon the well-known Haldane chain phase, i.e. the phase of spin-1 chains which host fractional excitations at their ends, akin to the hallmark excitations of quantum spin liquids. We tune our model to exactly soluble points, and find that the ground state realizes Haldane chains whose physical supports fluctuate, realizing both quantum spin liquid like and symmetry-protected topological phases. Crucially, this model is expected to describe actual materials, and we provide a detailed set of material-specific constraints which may be readily used for an experimental realization.
寻找真正的物质量子相是凝聚态物理现代研究的核心内容。量子自旋液体包含大量纠缠——这是一种完全的量子特性,即不改变系统其余部分就无法测量系统的一部分——是此类量子相的典型例子。在此,我们设计了一个基于著名的霍尔丹链相的现实模型,即自旋为1的链的相,其两端存在分数激发,类似于量子自旋液体的标志性激发。我们将模型调整到精确可解点,发现基态实现了物理支撑会波动的霍尔丹链,实现了类似量子自旋液体和对称保护拓扑相。至关重要的是,这个模型有望描述实际材料,并且我们提供了一组详细的特定材料约束条件,可方便地用于实验实现。