Suppr超能文献

通过分子动力学模拟探索DEAH/RHAU解旋酶DHX36识别平行G-四链体的机制。

Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations.

作者信息

Hossain Kazi Amirul, Jurkowski Michal, Czub Jacek, Kogut Mateusz

机构信息

Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.

Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

出版信息

Comput Struct Biotechnol J. 2021 Apr 23;19:2526-2536. doi: 10.1016/j.csbj.2021.04.039. eCollection 2021.

Abstract

Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5'-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5'-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5'-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.

摘要

由于G-四链体(G4)具有高度稳定性和缓慢的解折叠速率,细胞进化出了专门的解旋酶,以ATP依赖的方式破坏这些非经典的DNA和RNA结构。一个例子是DEAH-box解旋酶DHX36,它通过识别和解开平行G4参与基因表达和复制。在这里,我们使用全原子分子动力学模拟研究了DHX36对平行型G4具有高亲和力和特异性的分子基础。通过计算结合自由能,我们发现DHX36的两个主要G4相互作用亚结构域DSM和OB分别表现出高G4亲和力,但它们协同作用以识别平行G4的两个独特特征:鸟嘌呤四联体暴露的平面以及连续鸟嘌呤链独特的主链构象。我们的结果还表明,DSM介导的相互作用是结合自由能的主要贡献者,并且依赖于在GXXXG基序与DSM的疏水残基以及扁平鸟嘌呤平面之间形成广泛的范德华接触。因此,空间上更易接近的5'-G-四联体允许更有利的范德华和疏水相互作用,这导致DSM优先结合到5'-侧。与DSM相反,OB主要通过极性相互作用与G4结合,通过灵活适应5'-末端鸟嘌呤链与主链磷酸基团形成许多强氢键。我们还确定了由晶体结构中缺失的柔性环形成的第三个DHX36/G4相互作用位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/185f/8114077/0f9715c68829/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验