Prehosp Emerg Care. 2022 May-Jun;26(3):422-427. doi: 10.1080/10903127.2021.1934203. Epub 2021 Jun 21.
All medications should be stored within temperature ranges defined by manufacturers, but logistical and operational challenges of prehospital and military settings complicate adherence to these recommendations. Lorazepam and succinylcholine experience clinically relevant heat-related degradation, whereas midazolam does not. Because ketamine's stability when stored outside manufacturer recommendations is unknown, we evaluated the heat-related degradation of ketamine exposed to several temperature ranges. One hundred twenty vials of ketamine (50 mg/mL labeled concentration) from the same manufacturer lot were equally distributed and stored for six months in five environments: an active EMS unit in southwest Ohio (May-October 2019); heat chamber at constant 120 °F (C1); heat chamber fluctuating over 24 hours from 86 °F-120 °F (C2); heat chamber fluctuating over 24 hours from 40 °F-120 °F (C3); heat chamber kept at constant 70 °F (manufacturer recommended room temperature, C4). Four ketamine vials were removed every 30 days from each environment and sent to an FDA-accredited commercial lab for high performance liquid chromatography testing. Data loggers and thermistors allowed temperature recording every minute for all environments. Cumulative heat exposure was quantified by mean kinetic temperature (MKT), which accounts for additional heat-stress over time caused by temperature fluctuations and is a superior measure than simple ambient temperature. MKT was calculated for each environment at the time of ketamine removal. Descriptive statistics were used to describe the concentration changes at each time point. The MKT ranged from 73.6 °F-80.7 °F in the active EMS unit and stayed constant for each chamber (C1 MKT: 120 °F, C2 MKT: 107.3 °F, C3 MKT: 96.5 °F, C4 MKT: 70 °F). No significant absolute ketamine degradation, or trends in degradation, occurred in any environment at any time point. The lowest median concentration occurred in the EMS-stored samples removed after 6 months [48.2 mg/mL (47.75, 48.35)], or 96.4% relative strength to labeled concentration. Ketamine samples exhibited limited degradation after 6 months of exposure to real world and simulated extreme high temperature environments exceeding manufacturer recommendations. Future studies are necessary to evaluate ketamine stability beyond 6 months.
所有药物都应储存在制造商规定的温度范围内,但由于院前和军事环境的后勤和操作挑战,难以遵守这些建议。劳拉西泮和琥珀胆碱会经历与临床相关的热降解,而咪达唑仑则不会。由于氯胺酮在超出制造商建议的储存条件下的稳定性未知,我们评估了暴露于几种温度范围下的氯胺酮的热降解。 从同一制造商的同一批次中,将 120 支氯胺酮(50mg/ml 标记浓度)等分,并在五个环境中储存六个月:俄亥俄州西南部的一个活跃的急救医疗服务单位(2019 年 5 月至 10 月);恒温 120°F 的加热室(C1);加热室在 24 小时内波动,温度范围为 86°F-120°F(C2);加热室在 24 小时内波动,温度范围为 40°F-120°F(C3);加热室保持在恒定的 70°F(制造商推荐的室温,C4)。每隔 30 天从每个环境中取出四支氯胺酮瓶,并送往经 FDA 认证的商业实验室进行高效液相色谱测试。数据记录仪和热敏电阻允许每分钟记录所有环境的温度。平均动力学温度(MKT)用于量化累积热暴露,该温度考虑了由于温度波动而导致的额外热应激,是比简单环境温度更优越的衡量标准。在取出氯胺酮的同时,为每个环境计算 MKT。使用描述性统计来描述每个时间点的浓度变化。 在活跃的急救医疗服务单位中的 MKT 范围为 73.6°F-80.7°F,每个室的 MKT 保持不变(C1 的 MKT:120°F,C2 的 MKT:107.3°F,C3 的 MKT:96.5°F,C4 的 MKT:70°F)。在任何环境下,任何时间点都没有明显的绝对氯胺酮降解或降解趋势。在 6 个月后从 EMS 储存的样本中检测到的最低中位数浓度[48.2mg/ml(47.75,48.35)],或与标记浓度的相对强度为 96.4%。 在超出制造商建议的真实世界和模拟极端高温环境中暴露 6 个月后,氯胺酮样品的降解有限。需要进一步的研究来评估氯胺酮在 6 个月后的稳定性。