Suppr超能文献

使用机器学习算法预测脑龄:全面评估

Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation.

作者信息

Beheshti Iman, Ganaie M A, Paliwal Vardhan, Rastogi Aryan, Razzak Imran, Tanveer M

出版信息

IEEE J Biomed Health Inform. 2022 Apr;26(4):1432-1440. doi: 10.1109/JBHI.2021.3083187. Epub 2022 Apr 14.

Abstract

Machine learning (ML) algorithms play a vital role in the brain age estimation frameworks. The impact of regression algorithms on prediction accuracy in the brain age estimation frameworks have not been comprehensively evaluated. Here, we sought to assess the efficiency of different regression algorithms on brain age estimation. To this end, we built a brain age estimation framework based on a large set of cognitively healthy (CH) individuals ( N = 788) as a training set followed by different regression algorithms (22 different algorithms in total). We then quantified each regression-algorithm on independent test sets composed of 88 CH individuals, 70 mild cognitive impairment patients as well as 30 Alzheimer's disease patients. The prediction accuracy in the independent test set (i.e., CH set) varied in regression algorithms mean absolute error (MAE) from 4.63 to 7.14 yrs, R from 0.76 to 0.88. The highest and lowest prediction accuracies were achieved by Quadratic Support Vector Regression algorithm (MAE = 4.63 yrs, R = 0.88, 95% CI = [-1.26, 1.42]) and Binary Decision Tree algorithm (MAE = 7.14 yrs, R = 0.76, 95% CI = [-1.50, 2.62]), respectively. Our experimental results demonstrate that the prediction accuracy in brain age frameworks is affected by regression algorithms, indicating that advanced machine learning algorithms can lead to more accurate brain age predictions in clinical settings.

摘要

机器学习(ML)算法在脑龄估计框架中起着至关重要的作用。回归算法对脑龄估计框架中预测准确性的影响尚未得到全面评估。在此,我们试图评估不同回归算法在脑龄估计方面的效率。为此,我们基于大量认知健康(CH)个体(N = 788)构建了一个脑龄估计框架作为训练集,随后采用不同的回归算法(总共22种不同算法)。然后,我们在由88名CH个体、70名轻度认知障碍患者以及30名阿尔茨海默病患者组成的独立测试集上对每种回归算法进行量化。独立测试集(即CH集)中回归算法的预测准确性有所不同,平均绝对误差(MAE)从4.63岁到7.14岁不等,相关系数(R)从0.76到0.88不等。二次支持向量回归算法(MAE = 4.63岁,R = 0.88,95%置信区间 = [-1.26, 1.42])和二元决策树算法(MAE = 7.14岁,R = 0.76,95%置信区间 = [-1.50, 2.62])分别实现了最高和最低的预测准确性。我们的实验结果表明,脑龄框架中的预测准确性受回归算法影响,这表明先进的机器学习算法可在临床环境中带来更准确的脑龄预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验