Suppr超能文献

脑龄估算:重新审视与重新构建机器学习工作流程。

BrainAGE: Revisited and reframed machine learning workflow.

机构信息

Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany.

Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.

出版信息

Hum Brain Mapp. 2024 Feb 15;45(3):e26632. doi: 10.1002/hbm.26632.

Abstract

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.

摘要

自 BrainAGE 方法问世以来,用于预测脑龄的新机器学习方法不断涌现。从磁共振图像估计实际年龄的想法被证明是一个有趣的研究领域,因为它的解释相对简单,并且可能作为大脑健康的生物标志物。我们修改了之前使用相关向量回归(RVR)的 BrainAGE 方法,并将其替换为高斯过程回归(GPR),这使得处理更大的数据集(如 UK Biobank(UKB))更加稳定。此外,我们将全局 BrainAGE 方法扩展到区域 BrainAGE,为每个半球的五个脑叶提供空间特定的分数。我们在几种不同的情况下测试了新算法的性能,并在 ADNI 和精神分裂症样本以及新皮质变薄的合成数据集上研究了它们的有效性。结果表明,重新构建的全局模型在 UKB 样本上的表现有所提高,平均绝对误差(MAE)小于 2 年,并且健康参与者与阿尔茨海默病和精神分裂症患者之间的 BrainAGE 存在显著差异。此外,算法的工作原理显示出对模拟新皮质萎缩数据集的有意义的影响。区域 BrainAGE 模型在两个临床样本上表现良好,显示出不同损伤程度的特定疾病模式。结果表明,新的改进算法提供了可靠和有效的大脑年龄估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7d4/10879910/d63cb17c3ca5/HBM-45-e26632-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验