IEEE J Biomed Health Inform. 2021 Sep;25(9):3332-3339. doi: 10.1109/JBHI.2021.3083605. Epub 2021 Sep 3.
With the popularization of computer-aided diagnosis (CAD) technologies, more and more deep learning methods are developed to facilitate the detection of ophthalmic diseases. In this article, the deep learning-based detections for some common eye diseases, including cataract, glaucoma, and age-related macular degeneration (AMD), are analyzed. Generally speaking, morphological change in retina reveals the presence of eye disease. Then, while using some existing deep learning methods to achieve this analysis task, the satisfactory performance may not be given, since fundus images usually suffer from the impact of data imbalance and outliers. It is, therefore, expected that with the exploration of effective and robust deep learning algorithms, the detection performance could be further improved. Here, we propose a deep learning model combined with a novel mixture loss function to automatically detect eye diseases, through the analysis of retinal fundus color images. Specifically, given the good generalization and robustness of focal loss and correntropy-induced loss functions in addressing complex dataset with class imbalance and outliers, we present a mixture of those two losses in deep neural network model to improve the recognition performance of classifier for biomedical data. The proposed model is evaluated on a real-life ophthalmic dataset. Meanwhile, the performance of deep learning model with our proposed loss function is compared with the baseline models, while adopting accuracy, sensitivity, specificity, Kappa, and area under the receiver operating characteristic curve (AUC) as the evaluation metrics. The experimental results verify the effectiveness and robustness of the proposed algorithm.
随着计算机辅助诊断 (CAD) 技术的普及,越来越多的深度学习方法被开发出来,以方便眼科疾病的检测。本文分析了基于深度学习的一些常见眼病的检测方法,包括白内障、青光眼和年龄相关性黄斑变性 (AMD)。一般来说,视网膜的形态变化揭示了眼病的存在。然后,在使用一些现有的深度学习方法来完成这项分析任务时,由于眼底图像通常受到数据不平衡和异常值的影响,可能无法给出满意的性能。因此,预计通过探索有效的稳健深度学习算法,可以进一步提高检测性能。在这里,我们提出了一种结合新型混合损失函数的深度学习模型,通过对视网膜彩色眼底图像进行分析,自动检测眼部疾病。具体来说,鉴于焦点损失和相关熵损失函数在处理具有类不平衡和异常值的复杂数据集方面具有良好的泛化性和稳健性,我们在深度神经网络模型中提出了这两种损失的混合,以提高生物医学数据分类器的识别性能。所提出的模型在真实的眼科数据集上进行了评估。同时,通过采用准确率、敏感度、特异性、Kappa 和接收器工作特征曲线 (ROC) 下的面积 (AUC) 作为评价指标,将具有我们提出的损失函数的深度学习模型的性能与基线模型进行了比较。实验结果验证了所提出算法的有效性和稳健性。