Suppr超能文献

结构洞察靶向特异性的泛素连接酶为 S. cerevisiae 异柠檬酸裂解酶而不是 C. albicans 异柠檬酸裂解酶。

Structural insights into the targeting specificity of ubiquitin ligase for S. cerevisiae isocitrate lyase but not C. albicans isocitrate lyase.

机构信息

Graduate School of Science, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan.

Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

出版信息

J Struct Biol. 2021 Sep;213(3):107748. doi: 10.1016/j.jsb.2021.107748. Epub 2021 May 24.

Abstract

In Saccharomyces cerevisiae, the glyoxylate cycle is controlled through the posttranslational regulation of its component enzymes, such as isocitrate lyase (ICL), which catalyzes the first unique step of the cycle. The ICL of S.cerevisiae (ScIcl1) is tagged for proteasomal degradation through ubiquitination by a multisubunit ubiquitin ligase (the glucose-induced degradation-deficient (GID) complex), whereas that of the pathogenic yeast Candida albicans (CaIcl1) escapes this process. However, the reason for the ubiquitin targeting specificity of the GID complex for ScIcl1 and not for CaIcl1 is unclear. To gain some insight into this, in this study, the crystal structures of apo ScIcl1 and CaIcl1 in complex with formate and the cryogenic electron microscopy structure of apo CaIcl1 were determined at a resolution of 2.3, 2.7, and 2.6 Å, respectively. A comparison of the various structures suggests that the orientation of N-terminal helix α1 in S.cerevisiae is likely key to repositioning of ubiquitination sites and contributes to the distinction found in C. albicans ubiquitin evasion mechanism. This finding gives us a better understanding of the molecular mechanism of ubiquitin-dependent ScIcl1 degradation and could serve as a theoretical basis for the research and development of anti-C. albicans drugs based on the concept of CaIcl1 ubiquitination.

摘要

在酿酒酵母中,乙醛酸循环通过其组成酶的翻译后调控来控制,例如异柠檬酸裂合酶(ICL),它催化循环的第一个独特步骤。酿酒酵母的 ICL(ScIcl1)通过多亚基泛素连接酶(葡萄糖诱导降解缺陷(GID)复合物)的泛素化被标记进行蛋白酶体降解,而致病性酵母白色念珠菌的 ICL(CaIcl1)则逃避了这个过程。然而,GID 复合物对 ScIcl1 而非 CaIcl1 的泛素靶向特异性的原因尚不清楚。为了对此有一些了解,在这项研究中,分别以 2.3、2.7 和 2.6 Å 的分辨率确定了 apo ScIcl1 和 CaIcl1 与甲酸盐复合物的晶体结构以及 apo CaIcl1 的低温电子显微镜结构。对各种结构的比较表明,酿酒酵母中 N 端螺旋α1的取向可能是重新定位泛素化位点的关键,并有助于解释白色念珠菌中发现的泛素逃避机制的区别。这一发现使我们对依赖泛素的 ScIcl1 降解的分子机制有了更好的理解,并为基于 CaIcl1 泛素化概念的抗白色念珠菌药物的研究和开发提供了理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验