Suppr超能文献

精神分裂症患者源性 - 突变神经元神经递质释放损伤的跨平台验证。

Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived -mutant neurons.

机构信息

Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;

Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2025598118.

Abstract

Heterozygous deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous deletions, we observed the same synaptic impairment as in engineered -deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. -deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human deletions produced a reproducible increase in the levels of CASK, an intracellular -binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.

摘要

杂合缺失构成了目前已知与精神分裂症相关的最普遍的单基因突变,并且还易患多种其他神经发育障碍。工程化的杂合缺失会损害人类神经元中的神经递质释放,提示存在突触病理生理机制。然而,利用这一观察结果进行药物发现需要对其稳健性和有效性有信心。在这里,我们描述了一项多中心努力,以测试这一关键观察结果的普遍性,在两个实验室中使用独立的分析方法,对来自精神分裂症患者的杂合缺失的患者来源和新工程化的人类神经元进行分析。我们使用源自携带杂合缺失的精神分裂症患者的诱导多能干细胞分化的神经元,观察到与工程化 - 缺陷神经元相同的突触损伤。这种损伤表现为自发突触事件、诱发突触反应和突触成对脉冲抑制的大幅减少。使用与人类神经元相同的方法从胚胎干细胞产生的 - 缺陷小鼠神经元并未表现出神经递质释放受损,这表明存在人类特异性表型。同样的方法从人类神经元生成的人类 - 缺失产生了可重复的 CASK(一种细胞内 - 结合蛋白)水平增加,并与特征性基因表达变化相关。因此,杂合缺失会强烈损害人类神经元的突触功能,无论遗传背景如何,这为未来的药物发现努力提供了可能。

相似文献

5
Neuronal impact of patient-specific aberrant NRXN1α splicing.患者特异性异常 NRXN1α 剪接对神经元的影响。
Nat Genet. 2019 Dec;51(12):1679-1690. doi: 10.1038/s41588-019-0539-z. Epub 2019 Nov 29.

引用本文的文献

4
Genetics of Suicide.自杀的遗传学
Genes (Basel). 2025 Apr 3;16(4):428. doi: 10.3390/genes16040428.

本文引用的文献

3
The origin of NMDA receptor hypofunction in schizophrenia.精神分裂症中 NMDA 受体功能低下的起源。
Pharmacol Ther. 2020 Jan;205:107426. doi: 10.1016/j.pharmthera.2019.107426. Epub 2019 Oct 16.
10
Mini-review: Update on the genetics of schizophrenia.综述:精神分裂症遗传学研究进展
Ann Hum Genet. 2018 Sep;82(5):239-243. doi: 10.1111/ahg.12259. Epub 2018 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验