Fernando Michael B, Fan Yu, Zhang Yanchun, Tokolyi Alex, Murphy Aleta N, Kammourh Sarah, Deans P J Michael, Ghorbani Sadaf, Onatzevitch Ryan, Pero Adriana, Padilla Christopher, Williams Sarah E, Flaherty Erin K, Prytkova Iya A, Cao Lei, Knowles David A, Fang Gang, Slesinger Paul A, Brennand Kristen J
Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08864-9.
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations-sometimes affecting the same gene-will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, which encodes a presynaptic cell-adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain and are differentially affected by unique (non-recurrent) deletions. We contrast the cell-type-specific effect of patient-specific mutations in NRXN1 using human-induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Through distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1 deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, to achieve individualized restoration of NRXN1 isoform repertoires by increasing wild-type and/or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
鉴于大量基因与神经精神疾病风险显著相关,一个关键的未解决问题是,不同的突变(有时影响同一基因)在多大程度上需要量身定制的治疗策略。在此,我们在与罕见神经精神疾病相关的拷贝数变异(2p16.3)导致NRXN1杂合缺失的背景下考虑这一问题,NRXN1编码一种突触前细胞粘附蛋白,是大脑中关键的突触组织者。NRXN1可变剪接的复杂模式对于建立多样的神经回路至关重要,在大脑的不同细胞类型之间存在差异,并且受到独特(非复发性)缺失的不同影响。我们使用人类诱导多能干细胞对比了NRXN1中患者特异性突变的细胞类型特异性效应,发现NRXN1剪接的扰动会导致不同的细胞类型特异性突触结果。通过不同的功能丧失(LOF)和功能获得(GOF)机制,NRXN1缺失导致谷氨酸能神经元的突触活动降低,但导致γ-氨基丁酸能神经元的突触活动增加。相互的同基因操作因果性地证明,异常剪接驱动了这些突触活动的变化。对于NRXN1缺失,或许更广泛地说,精准医学将需要根据患者的基因突变是通过LOF还是GOF机制起作用来对患者进行分层,以通过增加野生型和/或消除突变体异构体来实现NRXN1异构体库的个体化恢复。鉴于预计在脑部疾病中产生LOF和GOF机制的突变数量不断增加,我们的发现为未来精准医学的考虑增添了细微差别。