Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
J Physiol. 2021 Jul;599(14):3437-3446. doi: 10.1113/JP281599. Epub 2021 Jun 16.
The kidney proximal tubule (PT) efficiently recovers the low level of albumin and other proteins that normally escape the glomerular filtration barrier. Two large receptors, megalin and cubilin/amnionless (CUBAM), bind to and efficiently retrieve these predominantly low molecular-weight proteins via clathrin-mediated endocytosis. Studies in cell culture models suggest that PT cells may sense changes in shear stress to modulate recovery of filtered proteins in response to normal variations in filtration rate. Impairments in PT endocytic function lead to the excretion of filtered proteins into the urine (tubular proteinuria). Remarkably, when the glomerular filtration barrier is breached, the PT is able to recover excess albumin with a capacity that is orders of magnitude higher than normal. What mediates this excess capacity for albumin uptake under nephrotic conditions, and why doesn't it compensate to prevent tubular proteinuria? Here we propose an integrated new working model to describe the PT recovery of filtered proteins under normal and nephrotic states. We hypothesize that uptake via the fluid phase provides excess capacity to recover high concentrations of filtered proteins under nephrotic conditions. Further, concentration of tubular fluid along the tubule axis will enhance the efficiency of uptake in more distal regions of the PT. By contrast to cells where fluid phase and receptor-mediated uptake are independent pathways, expression of megalin is required to maintain apical endocytic pathway integrity and is essential for both uptake mechanisms. This model accounts for both the high-affinity and the high-capacity responses to filtration load in physiological and pathological states.
肾脏近端小管 (PT) 能够有效地回收通常从肾小球滤过屏障漏出的低水平白蛋白和其他蛋白质。两种大型受体,巨球蛋白和 Cubilin/Amnionless(CUBAM),通过网格蛋白介导的内吞作用结合并有效地回收这些主要低分子量蛋白质。细胞培养模型研究表明,PT 细胞可能会感知剪切应力的变化,以调节滤过蛋白的回收,以响应滤过率的正常变化。PT 内吞作用功能的损伤会导致滤过蛋白排泄到尿液中(管状蛋白尿)。值得注意的是,当肾小球滤过屏障受损时,PT 能够以比正常情况下高几个数量级的能力回收过量的白蛋白。在肾病条件下,是什么介导了这种过量的白蛋白摄取能力,为什么它不能补偿以防止管状蛋白尿?在这里,我们提出了一个新的综合工作模型来描述正常和肾病状态下 PT 对滤过蛋白的回收。我们假设通过液相摄取提供了过量的能力,以在肾病条件下回收高浓度的滤过蛋白。此外,管状液沿着肾小管轴的浓缩将增强在 PT 更远端区域摄取的效率。与细胞中液相和受体介导的摄取是独立途径不同,巨球蛋白的表达对于维持顶端内吞途径的完整性是必需的,并且对于这两种摄取机制都是必需的。该模型解释了生理和病理状态下对滤过负荷的高亲和力和高容量反应。