Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
J Physiol. 2022 Apr;600(8):1933-1952. doi: 10.1113/JP282885. Epub 2022 Mar 2.
Recent studies indicate that filtered albumin is retrieved in the proximal tubule (PT) via three pathways: receptor-mediated endocytosis via cubilin (high affinity) and megalin (low affinity), and fluid-phase uptake. Expression of megalin is required to maintain all three pathways, making it challenging to determine their respective contributions. Moreover, uptake of filtered molecules varies between the sub-segments (S1, S2 and S3) that make up the PT. Here we used new and published data to develop a mathematical model that predicts the rates of albumin uptake in mouse PT sub-segments in normal and nephrotic states, and partially accounts for competition by β -microglobulin (β2m) and immunoglobulin G (IgG). Our simulations indicate that receptor-mediated, rather than fluid-phase, uptake accounts for the vast majority of ligand recovery. Our model predicts that ∼75% of normally filtered albumin is reabsorbed via cubilin; however, megalin-mediated uptake predominates under nephrotic conditions. Our results also suggest that ∼80% of albumin is normally recovered in S1, whereas nephrotic conditions or knockout of cubilin shifts the bulk of albumin uptake to S2. The model predicts β2m and IgG axial recovery profiles qualitatively similar to those of albumin under normal conditions. In contrast with albumin, however, the bulk of IgG and β2m uptake still occurs in S1 under nephrotic conditions. Overall, our model provides a kinetic rationale for why tubular proteinuria can occur even though a large excess in potential PT uptake capacity exists, and suggests testable predictions to expand our understanding of the recovery profile of filtered proteins along the PT. KEY POINTS: We used new and published data to develop a mathematical model that predicts the profile of albumin uptake in the mouse proximal tubule in normal and nephrotic states, and partially accounts for competitive inhibition of uptake by normally filtered and pathological ligands. Three pathways, consisting of high-affinity uptake by cubilin receptors, low-affinity uptake by megalin receptors and fluid phase uptake, contribute to the overall retrieval of filtered proteins. The axial profile and efficiency of protein uptake depend on the initial filtrate composition and the individual protein affinities for megalin and cubilin. Under normal conditions, the majority of albumin is retrieved in sub-segment S1 but shifts to sub-segment S2 under nephrotic conditions. Other proteins exhibit different uptake profiles. Our model explains how tubular proteinuria can occur despite a large excess in potential proximal tubule uptake capacity.
最近的研究表明,滤过白蛋白通过三种途径在近端小管 (PT) 中被回收:通过巨球蛋白 (低亲和力) 和 Cubilin (高亲和力) 的受体介导内吞作用,以及液相摄取。巨球蛋白的表达对于维持所有三种途径都是必需的,这使得确定它们各自的贡献变得具有挑战性。此外,滤过分子的摄取在构成 PT 的各个亚段(S1、S2 和 S3)之间有所不同。在这里,我们使用新的和已发表的数据开发了一个数学模型,该模型预测了正常和肾病状态下小鼠 PT 亚段中白蛋白摄取的速率,并部分解释了 β-微球蛋白 (β2m) 和免疫球蛋白 G (IgG) 的竞争。我们的模拟表明,受体介导的摄取而不是液相摄取占配体回收的绝大多数。我们的模型预测,正常滤过的白蛋白中约有 75% 通过 Cubilin 被重吸收;然而,在肾病状态下,巨球蛋白介导的摄取占主导地位。我们的结果还表明,正常情况下约有 80%的白蛋白在 S1 中被回收,而肾病条件或 Cubilin 敲除将白蛋白摄取的大部分转移到 S2。该模型预测,在正常条件下,β2m 和 IgG 的轴向回收率与白蛋白的回收率相似。然而,与白蛋白不同的是,在肾病状态下,大部分 IgG 和 β2m 的摄取仍发生在 S1。总体而言,我们的模型为为什么即使存在大量潜在的 PT 摄取能力,肾小管蛋白尿仍会发生提供了一个动力学的基本原理,并提出了可测试的预测,以扩展我们对沿 PT 滤过蛋白回收谱的理解。关键点:我们使用新的和已发表的数据开发了一个数学模型,该模型预测了正常和肾病状态下小鼠近端小管中白蛋白摄取的模式,并部分解释了通常滤过和病理配体摄取的竞争抑制。三种途径,包括 Cubilin 受体的高亲和力摄取、巨球蛋白受体的低亲和力摄取和液相摄取,共同促进了滤过蛋白的整体回收。蛋白质摄取的轴向分布和效率取决于初始滤过液的组成以及个体蛋白对巨球蛋白和 Cubilin 的亲和力。在正常条件下,大部分白蛋白在 S1 段被回收,但在肾病条件下转移到 S2 段。其他蛋白质表现出不同的摄取模式。我们的模型解释了为什么尽管近端小管的潜在摄取能力过剩,但仍会发生管状蛋白尿。