School of Automation Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
Center for Brain-Computer Intelligence, Pazhou Laboratory, Guangzhou, People's Republic of China.
J Neural Eng. 2021 Jun 9;18(4). doi: 10.1088/1741-2552/ac0583.
Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task.In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two MI EEG datasets.On the two datasets, the proposed method reduces the channel number from 71 and 15 to under 18 and 11 respectively without compromising the classification accuracy on unseen data. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles.This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.
许多基于脑电图(EEG)的脑机接口(BCI)系统使用大量通道来提高性能,但这在设置过程中既耗时又不方便实际应用。找到一个不影响性能的最优通道子集是一项必要且具有挑战性的任务。在本文中,我们提出了一种基于互相关的判别准则(XCDC),用于评估通道对于区分不同运动想象(MI)任务的心理状态的重要性。根据提出的准则对通道进行排序和选择。我们在两个 MI EEG 数据集上评估了 XCDC 的功效。在这两个数据集上,该方法将通道数量从 71 和 15 减少到 18 和 11 以下,而在未见数据上的分类准确性不受影响。在相同的准确性约束下,该方法所需的通道数少于基于 Pearson 相关系数和公共空间模式的现有通道选择方法。XCDC 的可视化结果与神经生理学原理一致。这项工作提出了一种用于评估和排序 MI 任务中 EEG 通道重要性的定量准则,并为 MI BCI 系统的校准阶段提供了一种选择排序通道的实用方法,这减轻了后续步骤中的计算复杂性和配置难度,实现了实时和更方便的 BCI 系统。