Suppr超能文献

基于相干性的脑磁图解码通道选择与黎曼几何特征

Coherence-based channel selection and Riemannian geometry features for magnetoencephalography decoding.

作者信息

Tang Chao, Gao Tianyi, Wang Gang, Chen Badong

机构信息

National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, 710049 China.

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049 China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3535-3548. doi: 10.1007/s11571-024-10085-1. Epub 2024 Mar 1.

Abstract

Magnetoencephalography (MEG) records the extremely weak magnetic fields on the surface of the scalp through highly sensitive sensors. Multi-channel MEG data provide higher spatial and temporal resolution when measuring brain activities, and can be applied for brain-computer interfaces as well. However, a large number of channels leads to high computational complexity and can potentially impact decoding accuracy. To improve the accuracy of MEG decoding, this paper proposes a new coherence-based channel selection method that effectively identifies task-relevant channels, reducing the presence of noisy and redundant information. Riemannian geometry is then used to extract effective features from selected channels of MEG data. Finally, MEG decoding is achieved by training a support vector machine classifier with the Radial Basis Function kernel. Experiments were conducted on two public MEG datasets to validate the effectiveness of the proposed method. The results from Dataset 1 show that Riemannian geometry achieves higher classification accuracy (compared to common spatial patterns and power spectral density) in the single-subject visual decoding task. Moreover, coherence-based channel selection significantly ( = 0.0002) outperforms the use of all channels. Moving on to Dataset 2, the results reveal that coherence-based channel selection is also significantly ( <0.0001) superior to all channels and channels around C3 and C4 in cross-session mental imagery decoding tasks. Additionally, the proposed method outperforms state-of-the-art methods in motor imagery tasks.

摘要

脑磁图(MEG)通过高灵敏度传感器记录头皮表面极其微弱的磁场。多通道MEG数据在测量大脑活动时提供更高的空间和时间分辨率,并且也可应用于脑机接口。然而,大量通道会导致高计算复杂度,并可能影响解码精度。为了提高MEG解码的准确性,本文提出了一种基于相干性的新通道选择方法,该方法能有效识别与任务相关的通道,减少噪声和冗余信息的存在。然后使用黎曼几何从MEG数据的选定通道中提取有效特征。最后,通过训练具有径向基函数核的支持向量机分类器来实现MEG解码。在两个公开的MEG数据集上进行了实验,以验证所提方法的有效性。数据集1的结果表明,在单受试者视觉解码任务中,黎曼几何(与共同空间模式和功率谱密度相比)实现了更高的分类准确率。此外,基于相干性的通道选择显著(p = 0.0002)优于使用所有通道。接着看数据集2,结果表明,在跨会话心理意象解码任务中,基于相干性的通道选择也显著(p<0.0001)优于所有通道以及C3和C4周围的通道。此外,所提方法在运动意象任务中优于现有方法。

相似文献

本文引用的文献

5
Categorizing objects from MEG signals using EEGNet.使用EEGNet从脑磁图信号中对物体进行分类。
Cogn Neurodyn. 2022 Apr;16(2):365-377. doi: 10.1007/s11571-021-09717-7. Epub 2021 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验