Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA, 95616, USA.
Sci Rep. 2021 May 26;11(1):10984. doi: 10.1038/s41598-021-88796-2.
Aptamer interactions with a surface of attachment are central to the design and performance of aptamer-based biosensors. We have developed a computational modeling approach to study different system designs-including different aptamer-attachment ends, aptamer surface densities, aptamer orientations, and solvent solutions-and applied it to an anti MUC1 aptamer tethered to a silica biosensor substrate. Amongst all the system designs explored, we found that attaching the anti MUC1 aptamer through the 5' terminal end, in a high surface density configuration, and solvated in a 0.8 M NaCl solution provided the best exposure of the aptamer MUC1 binding regions and resulted in the least amount of aptamer backbone fluctuations. Many of the other designs led to non-functional systems, with the aptamer collapsing onto the surface. The computational approach we have developed and the resulting analysis techniques can be employed for the rational design of aptamer-based biosensors and provide a valuable tool for improving biosensor performance and repeatability.
适体与附着表面的相互作用是基于适体的生物传感器设计和性能的核心。我们开发了一种计算建模方法来研究不同的系统设计,包括不同的适体附着端、适体表面密度、适体取向和溶剂溶液,并将其应用于连接到二氧化硅生物传感器基底的抗 MUC1 适体。在探索的所有系统设计中,我们发现通过 5' 末端将抗 MUC1 适体附着在高表面密度的配置中,并在 0.8 M NaCl 溶液中溶解,可提供最佳的适体 MUC1 结合区域暴露,并导致适体骨架波动最小。许多其他设计导致非功能系统,适体折叠到表面上。我们开发的计算方法和由此产生的分析技术可用于基于适体的生物传感器的合理设计,并为提高生物传感器的性能和重复性提供了有价值的工具。