Suppr超能文献

一种基于脑电图的自动睡眠分期系统,引入了NAoSP和NAoGP作为睡眠分期系统的新指标。

An automatic EEG-based sleep staging system with introducing NAoSP and NAoGP as new metrics for sleep staging systems.

作者信息

Melek Mesut, Manshouri Negin, Kayikcioglu Temel

机构信息

Department of Electronics and Automation, Gumushane University, 29100 Gumushane, Turkey.

Department of Electrical and Electronics Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.

出版信息

Cogn Neurodyn. 2021 Jun;15(3):405-423. doi: 10.1007/s11571-020-09641-2. Epub 2020 Oct 12.

Abstract

Different biological signals are recorded in sleep labs during sleep for the diagnosis and treatment of human sleep problems. Classification of sleep stages with electroencephalography (EEG) is preferred to other biological signals due to its advantages such as providing clinical information, cost-effectiveness, comfort, and ease of use. The evaluation of EEG signals taken during sleep by clinicians is a tiring, time-consuming, and error-prone method. Therefore, it is clinically mandatory to determine sleep stages by using software-supported systems. Like all classification problems, the accuracy rate is used to compare the performance of studies in this domain, but this metric can be accurate when the number of observations is equal in classes. However, since there is not an equal number of observations in sleep stages, this metric is insufficient in the evaluation of such systems. For this purpose, in recent years, Cohen's kappa coefficient and even the sensitivity of NREM1 have been used for comparing the performance of these systems. Still, none of them examine the system from all dimensions. Therefore, in this study, two new metrics based on the polygon area metric, called the normalized area of sensitivity polygon and normalized area of the general polygon, are proposed for the performance evaluation of sleep staging systems. In addition, a new sleep staging system is introduced using the applications offered by the MATLAB program. The existing systems discussed in the literature were examined with the proposed metrics, and the best systems were compared with the proposed sleep staging system. According to the results, the proposed system excels in comparison with the most advanced machine learning methods. The single-channel method introduced based on the proposed metrics can be used for robust and reliable sleep stage classification from all dimensions required for real-time applications.

摘要

在睡眠实验室中,人们在睡眠期间记录不同的生物信号,用于诊断和治疗人类睡眠问题。由于脑电图(EEG)具有提供临床信息、成本效益高、舒适度高和使用方便等优点,因此与其他生物信号相比,更倾向于使用EEG对睡眠阶段进行分类。临床医生对睡眠期间采集的EEG信号进行评估是一种累人、耗时且容易出错的方法。因此,使用软件支持的系统来确定睡眠阶段在临床上是必不可少的。与所有分类问题一样,准确率用于比较该领域研究的性能,但当类别中的观察数量相等时,该指标才会准确。然而,由于睡眠阶段的观察数量不相等,该指标在评估此类系统时并不充分。为此,近年来,科恩kappa系数甚至NREM1的敏感性已被用于比较这些系统的性能。不过,它们都没有从所有维度对系统进行考察。因此,在本研究中,提出了两个基于多边形面积度量的新指标,即敏感性多边形归一化面积和通用多边形归一化面积,用于睡眠分期系统的性能评估。此外,还利用MATLAB程序提供的应用引入了一种新的睡眠分期系统。用所提出的指标对文献中讨论的现有系统进行了考察,并将最佳系统与所提出的睡眠分期系统进行了比较。结果表明,所提出的系统与最先进的机器学习方法相比表现出色。基于所提出的指标引入的单通道方法可用于从实时应用所需的所有维度进行稳健可靠的睡眠阶段分类。

相似文献

7
Sleep staging algorithm based on multichannel data adding and multifeature screening.基于多通道数据添加和多特征筛选的睡眠分期算法。
Comput Methods Programs Biomed. 2020 Apr;187:105253. doi: 10.1016/j.cmpb.2019.105253. Epub 2019 Nov 30.
10
Roza: a new and comprehensive metric for evaluating classification systems.罗扎:一种用于评估分类系统的全新综合指标。
Comput Methods Biomech Biomed Engin. 2022 Jul;25(9):1015-1027. doi: 10.1080/10255842.2021.1995721. Epub 2021 Oct 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验