Suppr超能文献

睡眠语境网络:基于单通道 EEG 的自动睡眠分期的时间语境网络。

SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG.

机构信息

School of Electronic and Engineer, Heilongjiang University, Harbin, 150080, China; School of Computer Science and Technology, Heilongjiang University, Harbin, 150080, China.

Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.

出版信息

Comput Methods Programs Biomed. 2022 Jun;220:106806. doi: 10.1016/j.cmpb.2022.106806. Epub 2022 Apr 12.

Abstract

BACKGROUND AND OBJECTIVE

Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.

METHODS

In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.

RESULTS

We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.

CONCLUSIONS

The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.

摘要

背景与目的

单通道 EEG 是睡眠分期研究中最受欢迎的传感模式,因为它广泛符合睡眠分期指南。当前使用单通道 EEG 信号进行睡眠分期的深度学习方法主要是提取其周围时段的特征,以获取 EEG 时段的短期时间上下文信息,而忽略了长期时间上下文信息对睡眠分期的影响。然而,长期上下文信息包括睡眠周期中的睡眠阶段转换规则,这可以进一步提高睡眠分期的性能。本研究旨在开发一个时间上下文网络,以捕获 EEG 睡眠阶段之间的长期上下文。

方法

在本文中,我们设计了一个名为 SleepContextNet 的睡眠分期网络,用于睡眠阶段序列。SleepContextNet 可以提取和利用连续 EEG 时段之间的长期时间上下文,并将其与短期上下文相结合。我们利用卷积神经网络 (CNN) 层从每个睡眠阶段学习代表性特征,所学习的表示特征序列被输入到一个递归神经网络 (RNN) 层中,以按时间顺序学习睡眠阶段之间的长期和短期上下文信息。此外,我们设计了一种 EEG 数据增强算法,用于在不改变样本数量的情况下保留长期上下文信息。

结果

我们使用四个公共数据集评估了我们提出的网络的性能,即 2013 版睡眠 EDF(SEDF)、2018 版睡眠 EDF 扩展版(SEDFX)、睡眠心脏健康研究(SHHS)和 CAP 睡眠数据库。实验结果表明,SleepContextNet 通过捕获长期和短期时间上下文信息,在不同的评估指标上优于最新技术。在独立于受试者的交叉验证下,平均在 SEDF 上的准确率为 84.8%,在 SEDFX 上的准确率为 82.7%,在 SHHS 上的准确率为 86.4%,在 CAP 上的准确率为 78.8%。

结论

该网络从序列特征中提取睡眠阶段的长期和短期时间上下文信息,有效利用 EEG 时段之间的时间依赖性,提高了睡眠阶段的准确性。基于正向时间上下文信息的睡眠分期方法适用于实时家庭睡眠监测系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验