Ortiz Yerko, Carrión Javier, Lahoz-Beltrá Rafael, Gutiérrez Martín
School of Informatics and Telecommunications, Faculty of Engineering and Sciences, Diego Portales University, Santiago, Chile.
Department of Biodiversity, Ecology and Evolution (Biomathematics), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
Front Bioeng Biotechnol. 2021 May 10;9:660148. doi: 10.3389/fbioe.2021.660148. eCollection 2021.
Metaheuristics (MH) are Artificial Intelligence procedures that frequently rely on evolution. MH approximate difficult problem solutions, but are computationally costly as they explore large solution spaces. This work pursues to lay the foundations of general mappings for implementing MH using Synthetic Biology constructs in cell colonies. Two advantages of this approach are: harnessing large scale parallelism capability of cell colonies and, using existing cell processes to implement basic dynamics defined in computational versions. We propose a framework that maps MH elements to synthetic circuits in growing cell colonies to replicate MH behavior in cell colonies. Cell-cell communication mechanisms such as quorum sensing (QS), bacterial conjugation, and environmental signals map to evolution operators in MH techniques to adapt to growing colonies. As a proof-of-concept, we implemented the workflow associated to the framework: automated MH simulation generators for the simulator and two classes of algorithms (Simple Genetic Algorithms and Simulated Annealing) encoded as synthetic circuits. Implementation tests show that synthetic counterparts mimicking MH are automatically produced, but also that cell colony parallelism speeds up the execution in terms of generations. Furthermore, we show an example of how our framework is extended by implementing a different computational model: The Cellular Automaton.
元启发式算法(MH)是一类经常依赖进化的人工智能程序。MH用于逼近难题的解决方案,但由于要探索庞大的解空间,其计算成本很高。这项工作旨在为利用细胞群体中的合成生物学构建体来实现MH奠定通用映射的基础。这种方法有两个优点:利用细胞群体的大规模并行能力,以及利用现有的细胞过程来实现计算版本中定义的基本动态。我们提出了一个框架,将MH元素映射到生长中的细胞群体中的合成电路,以在细胞群体中复制MH行为。诸如群体感应(QS)、细菌接合和环境信号等细胞间通信机制映射到MH技术中的进化算子,以适应生长中的群体。作为概念验证,我们实现了与该框架相关的工作流程:用于模拟器的自动化MH模拟生成器,以及编码为合成电路的两类算法(简单遗传算法和模拟退火算法)。实施测试表明,不仅能自动生成模仿MH的合成对应物,而且细胞群体并行性在世代方面加快了执行速度。此外,我们展示了一个通过实现不同的计算模型(细胞自动机)来扩展我们框架的示例。