Escalona-Vargas Diana Irazú, Lopez-Arevalo Ivan, Gutiérrez David
Information Technology Laboratory, Center for Research and Advanced Studies (Cinvestav), Ciudad Victoria, TAMPS 87130, Mexico.
Biomedical Signal Processing Laboratory, Center for Research and Advanced Studies (Cinvestav), Apodaca, NL 66600, Mexico.
ScientificWorldJournal. 2014 Mar 16;2014:524367. doi: 10.1155/2014/524367. eCollection 2014.
We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.
我们研究了非参数多比较统计检验在模拟退火(SA)、遗传算法(GA)、粒子群优化(PSO)和差分进化(DE)用于脑电图(EEG)源定位性能方面的应用。此类任务可被视为一个优化问题,而上述元启发式方法非常适合解决该问题。因此,我们根据元启发式方法的操作参数以及目标函数的固定评估次数来评估定位性能。通过这种方式,我们能够将元启发式方法的效率与计算成本的通用度量联系起来。我们的结果表明,在单源定位的情况下,元启发式方法的性能没有显著差异。在定位两个相关源的情况下,我们发现PSO(环形和树形拓扑)和DE表现最差,因此在大规模EEG源定位问题中不应考虑它们。总体而言,多比较检验表明,选择特定的元启发式方法及其操作参数的变化对该优化问题影响很小。