Suppr超能文献

全景组学:推动心脏病学发展的新数据库

Panomics: New Databases for Advancing Cardiology.

作者信息

Vakili Dara, Radenkovic Dina, Chawla Shreya, Bhatt Deepak L

机构信息

Imperial College School of Medicine, Imperial College London, London, United Kingdom.

Hooke London, London, United Kingdom.

出版信息

Front Cardiovasc Med. 2021 May 10;8:587768. doi: 10.3389/fcvm.2021.587768. eCollection 2021.

Abstract

The multifactorial nature of cardiology makes it challenging to separate noisy signals from confounders and real markers or drivers of disease. Panomics, the combination of various omic methods, provides the deepest insights into the underlying biological mechanisms to develop tools for personalized medicine under a systems biology approach. Questions remain about current findings and anticipated developments of omics. Here, we search for omic databases, investigate the types of data they provide, and give some examples of panomic applications in health care. We identified 104 omic databases, of which 72 met the inclusion criteria: genomic and clinical measurements on a subset of the database population plus one or more omic datasets. Of those, 65 were methylomic, 59 transcriptomic, 41 proteomic, 42 metabolomic, and 22 microbiomic databases. Larger database sample sizes and longer follow-up are often better suited for panomic analyses due to statistical power calculations. They are often more complete, which is important when dealing with large biological variability. Thus, the UK BioBank rises as the most comprehensive panomic resource, at present, but certain study designs may benefit from other databases.

摘要

心脏病学的多因素性质使得从混杂因素以及疾病的真正标志物或驱动因素中分离出噪声信号具有挑战性。泛组学,即各种组学方法的结合,能在系统生物学方法下为开发个性化医疗工具提供对潜在生物学机制的最深入见解。关于组学的当前发现和预期发展仍存在问题。在此,我们搜索了组学数据库,研究了它们提供的数据类型,并给出了一些泛组学在医疗保健中应用的例子。我们识别出104个组学数据库,其中72个符合纳入标准:对数据库人群的一个子集进行基因组和临床测量,再加上一个或多个组学数据集。其中,65个是甲基化组学数据库,59个是转录组学数据库,41个是蛋白质组学数据库,42个是代谢组学数据库,22个是微生物组学数据库。由于统计功效计算,更大的数据库样本量和更长的随访时间通常更适合进行泛组学分析。它们往往更完整,这在处理较大的生物学变异性时很重要。因此,英国生物银行目前作为最全面的泛组学资源脱颖而出,但某些研究设计可能会从其他数据库中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ed7/8142819/9ceb80f89fc4/fcvm-08-587768-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验