Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Cluster of Excellence "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany.
J Morphol. 2021 Aug;282(8):1259-1273. doi: 10.1002/jmor.21382. Epub 2021 Jun 4.
While cellulose is the most abundant macromolecule in the biosphere, most animals are unable to produce cellulose with the exception of tunicates. Some tunicates have evolved the ability to secrete a complex house containing cellulosic fibers, yet little is known about the early stages of the house building process. Here, we investigate the rudimentary house of Oikopleura dioica for the first time using complementary light and electron microscopic techniques. In addition, we digitally modeled the arrangement of chambers, nets, and filters of the functional, expanded house in three dimensions based on life-video-imaging. Combining 3D-reconstructions based on serial histological semithin-sections, confocal laser scanning microscopy, transmission electron microscopy, scanning electron microscopy (SEM), and focused ion beam (FIB)-SEM, we were able to elucidate the arrangement of structural components, including cellulosic fibers, of the rudimentary house with a focus on the food concentration filter. We developed a model for the arrangement of folded structures in the house rudiment and show it is a precisely preformed structure with identifiable components intricately correlated with specific cells. Moreover, we demonstrate that structural details of the apical surfaces of Nasse cells provide the exact locations and shapes to produce the fibers of the house and interact among each other, with Giant Fol cells, and with the fibers to arrange them in the precise positions necessary for expansion of the house rudiment into the functional state. The presented data and hypotheses advance our knowledge about the interrelation of structure and function on different biological levels and prompt investigations into this astonishing biological object.
虽然纤维素是生物圈中最丰富的大分子,但除了被囊动物外,大多数动物都无法产生纤维素。一些被囊动物已经进化出了分泌含有纤维素纤维的复杂房屋的能力,但人们对房屋建造过程的早期阶段知之甚少。在这里,我们首次使用互补的光镜和电子显微镜技术研究了 Oikopleura dioica 的原始房屋。此外,我们还根据生活视频成像,以数字方式对功能扩展房屋的腔室、网和过滤器的排列进行了三维建模。结合基于连续组织学半薄切片的 3D 重建、共聚焦激光扫描显微镜、透射电子显微镜、扫描电子显微镜 (SEM) 和聚焦离子束 (FIB)-SEM,我们能够阐明原始房屋结构组件的排列,包括纤维素纤维,重点是食物浓缩过滤器。我们开发了一种用于房屋原始褶皱结构排列的模型,并表明它是一种精确预成型的结构,具有可识别的组件,与特定细胞密切相关。此外,我们证明 Nasse 细胞的顶端表面的结构细节为产生房屋纤维提供了确切的位置和形状,并相互作用,与 Giant Fol 细胞以及纤维相互作用,将它们排列在使房屋原始结构扩张到功能状态所必需的精确位置。所呈现的数据和假设推进了我们对不同生物学水平上结构和功能相互关系的认识,并促使对这一惊人的生物物体进行进一步研究。