Suppr超能文献

数据挖掘测试条件和样本特性对脑生物力学的影响。

Data mining the effects of testing conditions and specimen properties on brain biomechanics.

作者信息

Patterson Folly, AbuOmar Osama, Jones Mike, Tansey Keith, Prabhu R K

机构信息

Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS, USA.

Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA.

出版信息

Int Biomech. 2019 Dec;6(1):34-46. doi: 10.1080/23335432.2019.1621206.

Abstract

Traumatic brain injury is highly prevalent in the United States. However, despite its frequency and significance, there is little understanding of how the brain responds during injurious loading. A confounding problem is that because testing conditions vary between assessment methods, brain biomechanics cannot be fully understood. Data mining techniques, which are commonly used to determine patterns in large datasets, were applied to discover how changes in testing conditions affect the mechanical response of the brain. Data at various strain rates were collected from published literature and sorted into datasets based on strain rate and tension vs. compression. Self-organizing maps were used to conduct a sensitivity analysis to rank the testing condition parameters by importance. Fuzzy C-means clustering was applied to determine if there were any patterns in the data. The parameter rankings and clustering for each dataset varied, indicating that the strain rate and type of deformation influence the role of these parameters in the datasets.

摘要

创伤性脑损伤在美国极为普遍。然而,尽管其发生频率高且意义重大,但对于大脑在损伤性负荷期间如何反应却知之甚少。一个令人困惑的问题是,由于评估方法之间的测试条件各不相同,大脑生物力学无法得到充分理解。数据挖掘技术通常用于确定大型数据集中的模式,被应用于发现测试条件的变化如何影响大脑的机械反应。从已发表的文献中收集了各种应变率的数据,并根据应变率以及拉伸与压缩情况将其分类到数据集中。使用自组织映射进行敏感性分析,以按重要性对测试条件参数进行排序。应用模糊C均值聚类来确定数据中是否存在任何模式。每个数据集的参数排名和聚类各不相同,这表明应变率和变形类型会影响这些参数在数据集中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验