Nelson David W, Bellander Bo-Michael, Maccallum Robert M, Axelsson Johan, Alm Markus, Wallin Mats, Weitzberg Eddie, Rudehill Anders
Department of Anaesthesiology and Intensive care, Karolinska University Hospital, Stockholm Sweden.
Crit Care Med. 2004 Dec;32(12):2428-36. doi: 10.1097/01.ccm.0000147688.08813.9c.
To analyze patterns of cerebral microdialysis in patients with traumatic brain injury and, with a neural network methodology, investigate pattern relationships to intracranial pressure and cerebral perfusion pressure.
Retrospective.
University hospital, adult neurosurgical intensive care unit.
Twenty-six patients with severe traumatic brain injury. All consecutive traumatic brain injured patients (Glasgow Coma Scale < or =8) with microdialysis monitoring, analyzing glutamate, lactate, pyruvate, and glucose in both penumbral and nonpenumbral tissue.
None; patients received the unit's standard neurointensive care procedure.
We used 2084 hrs of complete microdialysis data sets (eight markers) to train Kohonen self-organizing maps. The self-organizing map algorithm is a data-clustering method that reduces high-dimensional information to a two-dimensional representation on a grid (map), retaining local relationships in the data. Maps were colored (overlaid) for intracranial pressure, cerebral perfusion pressure, and outcome, to explore relationships with underlying microdialysis patterns. The maps exhibited a striking clustering of patients, with unique microdialysis patterns that were recognizable throughout the analysis period. This also held true for most microdialysis patterns characteristic of ischemia. These patients with ischemic patterns can have good outcomes, suggesting a disparity between microdialysis values and severity of traumatic brain injury.
Using an artificial neural network-like clustering technique, Kohonen self-organizing maps, we have shown that cerebral microdialysis, in traumatic brain injury, exhibits strikingly individualistic patterns that are identifiable throughout the analysis period. Because patients form their own clusters, microdialysis patterns, during periods of increased intracranial pressure or decreased cerebral perfusion pressure, will be found within these clusters. Consequently, no common pattern of microdialysis can be seen among patients within the range of our data. We suggest that these individualistic patterns reflect not only metabolic states of traumatic brain injury but also local gradients seen with small volume sampling. Future investigation should focus on relating these patterns, and movement within and from clusters, to metabolic states of the complex pathophysiology of traumatic brain injury.
分析创伤性脑损伤患者的脑微透析模式,并采用神经网络方法研究这些模式与颅内压和脑灌注压的关系。
回顾性研究。
大学医院,成人神经外科重症监护病房。
26例重度创伤性脑损伤患者。所有连续的创伤性脑损伤患者(格拉斯哥昏迷量表≤8分)均接受微透析监测,分析半暗带和非半暗带组织中的谷氨酸、乳酸、丙酮酸和葡萄糖。
无;患者接受该科室的标准神经重症监护程序。
我们使用2084小时的完整微透析数据集(8个标志物)来训练Kohonen自组织映射。自组织映射算法是一种数据聚类方法,可将高维信息简化为网格(映射)上的二维表示,保留数据中的局部关系。为颅内压、脑灌注压和预后对映射进行着色(叠加),以探索与潜在脑微透析模式的关系。映射显示出患者的显著聚类,具有独特的脑微透析模式,在整个分析期间均可识别。对于大多数缺血特征性的脑微透析模式也是如此。这些具有缺血模式的患者可能有良好的预后,提示脑微透析值与创伤性脑损伤严重程度之间存在差异。
使用类似人工神经网络的聚类技术——Kohonen自组织映射,我们已经表明,在创伤性脑损伤中,脑微透析呈现出在整个分析期间均可识别的显著个性化模式。由于患者形成了各自的聚类,在颅内压升高或脑灌注压降低期间的脑微透析模式将在这些聚类中被发现。因此,在我们的数据范围内,患者之间未见共同的脑微透析模式。我们认为这些个性化模式不仅反映了创伤性脑损伤的代谢状态,还反映了小体积采样所见的局部梯度。未来的研究应集中于将这些模式以及聚类内和聚类间的变化与创伤性脑损伤复杂病理生理学的代谢状态联系起来。