Shi Yuanyuan, Groven Benjamin, Serron Jill, Wu Xiangyu, Nalin Mehta Ankit, Minj Albert, Sergeant Stefanie, Han Han, Asselberghs Inge, Lin Dennis, Brems Steven, Huyghebaert Cedric, Morin Pierre, Radu Iuliana, Caymax Matty
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium.
ACS Nano. 2021 Jun 22;15(6):9482-9494. doi: 10.1021/acsnano.0c07761. Epub 2021 May 27.
In view of its epitaxial seeding capability, -plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX monolayer. Therefore, molybdenum disulfide (MoS) is deposited by metal-organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of -plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS monolayer on both sapphire templates. MoS regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step height-and thus also surface structure-become more uniform across the substrate and MoS conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX growth behavior and capture the influence on its structural and electrical properties.
鉴于其外延生长能力,c面单晶蓝宝石是最具吸引力且与工业兼容的模板之一,可用于实现用于超越硅的功能性、超大规模纳米电子器件的单晶二维过渡金属二硫属化物(MX)的可制造沉积。尽管蓝宝石表面原子级平整,但在制造过程中,蓝宝石台面之间的表面形貌、结构和化学终端存在差异。迄今为止,人们对这些蓝宝石表面异常如何影响局部外延配准以及沉积的MX单层的本征电学性质仍知之甚少。因此,通过金属有机化学气相沉积(MOCVD)在工业标准外延反应器中,在两种具有明显不同台面和台阶尺寸的c面蓝宝石上沉积二硫化钼(MoS₂)。互补的扫描探针显微镜技术揭示了在两种蓝宝石模板上的第一个外延MoS₂单层中存在不均匀的电导率分布。电导率差的MoS₂区域对应于形貌和表面结构不受控制的蓝宝石台面。通过有意施加较大的离轴切割角(本工作中为1°),蓝宝石台面宽度和台阶高度以及表面结构在整个衬底上变得更加均匀,并且MoS₂传导电流更加均匀。此外,这些效应会延伸到外在的MoS₂器件性能中:在较高的中值电子迁移率下,场效应晶体管的变化在晶片内部和晶片之间都会减小。仔细控制蓝宝石表面形貌和结构被证明是系统研究和控制MX生长行为以及了解其对结构和电学性质影响的必要前提。