Suppr超能文献

双层二硫化钼在蓝宝石上的均匀形核和外延生长。

Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire.

机构信息

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.

School of Physics, Southeast University, Nanjing, China.

出版信息

Nature. 2022 May;605(7908):69-75. doi: 10.1038/s41586-022-04523-5. Epub 2022 May 4.

Abstract

Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors. However, despite advances in the growth of monolayer TMDs, the controlled epitaxial growth of multilayers remains a challenge. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS channels show substantial improvements in mobility (up to 122.6 cm V s) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA μm, which exceeds the 2028 roadmap target for high-performance FETs.

摘要

二维过渡金属二硫属化物(TMDs)在超越硅的电子学中很有应用前景。有人提出,双层 TMDs 结合了良好的静电控制、比单层更小的带隙和更高的迁移率,有可能提高晶体管的能量延迟乘积。然而,尽管单层 TMDs 的生长取得了进展,但多层 TMDs 的可控外延生长仍然是一个挑战。在这里,我们报告了在 c 面蓝宝石上双层二硫化钼(MoS)的均匀形核(>99%)。特别是,我们设计了 c 面蓝宝石上的原子梯级高度,以实现边缘形核机制,并使 MoS 畴合并成连续的厘米级薄膜。基于双层 MoS 沟道的场效应晶体管(FET)器件在迁移率(高达 122.6 cm V s)和变化方面与基于单层薄膜的 FET 相比有了显著提高。此外,短沟道 FET 表现出 1.27 mA μm 的导通电流,超过了高性能 FET 的 2028 年路线图目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验