Suppr超能文献

基于FHIR的肿瘤学:分布式癌症研究的数据模型。

Oncology on FHIR: A Data Model for Distributed Cancer Research.

作者信息

Lambarki Mohamed, Kern Jori, Croft David, Engels Cäcilia, Deppenwiese Noemi, Kerscher Alexander, Kiel Alexander, Palm Stefan, Lablans Martin

机构信息

Federated Information Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Charité University Medicine Berlin, German Biobank Node, Berlin, Germany.

出版信息

Stud Health Technol Inform. 2021 May 24;278:203-210. doi: 10.3233/SHTI210070.

Abstract

In the field of oncology, a close integration of cancer research and patient care is indispensable. Although an exchange of data between health care providers and other institutions such as cancer registries has already been established in Germany, it does not take advantage of internationally coordinated health data standards. Translational cancer research would also benefit from such standards in the context of secondary data use. This paper employs use cases from the German Cancer Consortium (DKTK) to show how this gap can be closed using a harmonised FHIR-based data model, and how to apply it to an existing federated data platform.

摘要

在肿瘤学领域,癌症研究与患者护理的紧密结合不可或缺。尽管德国医疗保健提供者与癌症登记处等其他机构之间的数据交换已经建立,但尚未利用国际协调的健康数据标准。在二次数据使用方面,转化性癌症研究也将受益于此类标准。本文采用德国癌症联盟(DKTK)的用例,展示如何使用基于FHIR的统一数据模型来弥合这一差距,以及如何将其应用于现有的联合数据平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验