Suppr超能文献

带可解释规则、矩阵分解和协同学习的传导多视图建模。

Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning.

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):11226-11239. doi: 10.1109/TCYB.2021.3071451. Epub 2022 Sep 19.

Abstract

Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.

摘要

多视图模糊系统旨在有效地处理多视图场景中的模糊建模,并通过多视图学习获得可解释的模型。然而,目前的多视图模糊系统研究仍然面临着几个挑战,其中之一是在标记数据较少的情况下如何实现多视图之间的有效协作。为了解决这个挑战,本文探讨了一种新的转导多视图模糊建模方法。通过将转导学习集成到模糊模型中,同时使用新的学习准则学习模型和标签,减少了对标记数据的依赖。矩阵分解被纳入其中,以进一步提高模糊模型的性能。此外,还利用多视图之间的协作学习来增强模型的鲁棒性。实验结果表明,该方法具有很高的竞争力,优于其他多视图学习方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验