Wen Jie, Zhang Zheng, Zhang Zhao, Fei Lunke, Wang Meng
IEEE Trans Cybern. 2021 Jan;51(1):101-114. doi: 10.1109/TCYB.2020.2987164. Epub 2020 Dec 22.
An important underlying assumption that guides the success of the existing multiview learning algorithms is the full observation of the multiview data. However, such rigorous precondition clearly violates the common-sense knowledge in practical applications, where in most cases, only incomplete fractions of the multiview data are given. The presence of the incomplete settings generally disables the conventional multiview clustering methods. In this article, we propose a simple but effective incomplete multiview clustering (IMC) framework, which simultaneously considers the local geometric information and the unbalanced discriminating powers of these incomplete multiview observations. Specifically, a novel graph-regularized matrix factorization model, on the one hand, is developed to preserve the local geometric similarities of the learned common representations from different views. On the other hand, the semantic consistency constraint is introduced to stimulate these view-specific representations toward a unified discriminative representation. Moreover, the importance of different views is adaptively determined to reduce the negative influence of the unbalanced incomplete views. Furthermore, an efficient learning algorithm is proposed to solve the resulting optimization problem. Extensive experimental results performed on several incomplete multiview datasets demonstrate that the proposed method can achieve superior clustering performance in comparison with some state-of-the-art multiview learning methods.
指导现有多视图学习算法成功的一个重要潜在假设是对多视图数据的完全观测。然而,这样严格的前提条件显然违背了实际应用中的常识,在实际应用中,大多数情况下只给出了多视图数据的不完整部分。不完整设置的存在通常会使传统的多视图聚类方法失效。在本文中,我们提出了一个简单但有效的不完整多视图聚类(IMC)框架,该框架同时考虑了这些不完整多视图观测的局部几何信息和不平衡的区分能力。具体来说,一方面,开发了一种新颖的图正则化矩阵分解模型,以保留从不同视图学习到的公共表示的局部几何相似性。另一方面,引入语义一致性约束,以促使这些特定于视图的表示朝着统一的判别表示发展。此外,自适应地确定不同视图的重要性,以减少不平衡不完整视图的负面影响。此外,还提出了一种有效的学习算法来解决由此产生的优化问题。在几个不完整多视图数据集上进行的大量实验结果表明,与一些现有的多视图学习方法相比,所提出的方法可以实现卓越的聚类性能。