Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
Mol Biol Evol. 2021 Sep 27;38(10):4301-4309. doi: 10.1093/molbev/msab164.
The standard genetic code (SGC) has been extensively analyzed for the biological ramifications of its nonrandom structure. For instance, mismatch errors due to point mutation or mistranslation have an overall smaller effect on the amino acid polar requirement under the SGC than under random genetic codes (RGCs). A similar observation was recently made for frameshift errors, prompting the assertion that the SGC has been shaped by natural selection for frameshift-robustness-conservation of certain amino acid properties upon a frameshift mutation or translational frameshift. However, frameshift-robustness confers no benefit because frameshifts usually create premature stop codons that cause nonsense-mediated mRNA decay or production of nonfunctional truncated proteins. We here propose that the frameshift-robustness of the SGC is a byproduct of its mismatch-robustness. Of 564 amino acid properties considered, the SGC exhibits mismatch-robustness in 93-133 properties and frameshift-robustness in 55 properties, respectively, and that the latter is largely a subset of the former. For each of the 564 real and 564 randomly constructed fake properties of amino acids, there is a positive correlation between mismatch-robustness and frameshift-robustness across one million RGCs; this correlation arises because most amino acid changes resulting from a frameshift are also achievable by a mismatch error. Importantly, the SGC does not show significantly higher frameshift-robustness in any of the 55 properties than RGCs of comparable mismatch-robustness. These findings support that the frameshift-robustness of the SGC need not originate through direct selection and can instead be a site effect of its mismatch-robustness.
标准遗传密码(SGC)的非随机结构对其生物学影响进行了广泛的分析。例如,由于点突变或翻译错误导致的错配错误对 SGC 下的氨基酸极性要求的总体影响小于随机遗传密码(RGC)下的影响。最近在移码错误中也观察到了类似的情况,促使人们断言 SGC 已经通过自然选择来适应移码稳健性,即在移码突变或翻译移码时保持某些氨基酸性质不变。然而,移码稳健性没有带来任何好处,因为移码通常会产生过早的终止密码子,导致无意义介导的 mRNA 降解或产生无功能的截短蛋白。我们在这里提出,SGC 的移码稳健性是其错配稳健性的副产品。在所考虑的 564 种氨基酸性质中,SGC 在 93-133 种性质中表现出错配稳健性,在 55 种性质中表现出移码稳健性,后者在很大程度上是前者的子集。对于每个 564 种真实氨基酸性质和 564 种随机构建的假氨基酸性质,在 100 万个 RGC 中,错配稳健性和移码稳健性之间存在正相关关系;这种相关性是因为大多数由移码引起的氨基酸变化也可以通过错配错误来实现。重要的是,与具有可比错配稳健性的 RGC 相比,SGC 在任何 55 种性质中都没有显示出明显更高的移码稳健性。这些发现支持 SGC 的移码稳健性不必源自直接选择,而是可以替代其错配稳健性的位点效应。