Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; Institut National de la Santé et de la Recherche Médicale, U1001; CRI, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
Mol Cell. 2019 Aug 8;75(3):427-441.e5. doi: 10.1016/j.molcel.2019.06.041. Epub 2019 Jul 25.
The translation machinery and the genes it decodes co-evolved to achieve production throughput and accuracy. Nonetheless, translation errors are frequent, and they affect physiology and protein evolution. Mapping translation errors in proteomes and understanding their causes is hindered by lack of a proteome-wide experimental methodology. We present the first methodology for systematic detection and quantification of errors in entire proteomes. Following proteome mass spectrometry, we identify, in E. coli and yeast, peptides whose mass indicates specific amino acid substitutions. Most substitutions result from codon-anticodon mispairing. Errors occur at sites that evolve rapidly and that minimally affect energetic stability, indicating selection for high translation fidelity. Ribosome density data show that errors occur at sites where ribosome velocity is higher, demonstrating a trade-off between speed and accuracy. Treating bacteria with an aminoglycoside antibiotic or deprivation of specific amino acids resulted in particular patterns of errors. These results reveal a mechanistic and evolutionary basis for translation fidelity.
翻译机制及其解码的基因共同进化,以实现生产效率和准确性。尽管如此,翻译错误还是很常见,它们会影响生理和蛋白质进化。由于缺乏一种全蛋白质组范围的实验方法学,因此难以对蛋白质组中的翻译错误进行映射和理解其原因。我们提出了一种用于系统检测和定量整个蛋白质组中错误的方法学。在对蛋白质组进行质谱分析后,我们在大肠杆菌和酵母中鉴定出了质量表明特定氨基酸取代的肽。大多数取代是由密码子-反密码子错配引起的。错误发生在快速进化且最小影响能量稳定性的位点,表明对高翻译保真度的选择。核糖体密度数据表明,错误发生在核糖体速度较高的部位,这证明了速度和准确性之间的权衡。用氨基糖苷类抗生素处理细菌或剥夺特定的氨基酸会导致特定的错误模式。这些结果揭示了翻译保真度的机制和进化基础。