Department of Plant Sciences, University of California, Davis, 95616, CA, USA.
School of Biological Sciences, University of Southampton, Hampshire, SO17 1BJ, UK.
BMC Plant Biol. 2021 May 27;21(1):237. doi: 10.1186/s12870-021-02987-7.
Water supply limits agricultural productivity of many crops including lettuce. Identifying cultivars within crop species that can maintain productivity with reduced water supply is a significant challenge, but central to developing resilient crops for future water-limited climates. We investigated traits known to be related to water-use efficiency (WUE) and yield in lettuce, a globally important leafy salad crop, in a recombinant inbred line (RIL) lettuce mapping population, produced from a cross between the cultivated Lactuca sativa L. cv. Salinas and its wild progenitor L. serriola L.
Wild and cultivated lettuce differed in their WUE and we observed transgressive segregation in yield and water-use traits in the RILs. Quantitative trait loci (QTL) analysis identified genomic regions controlling these traits under well-watered and droughted conditions. QTL were detected for carbon isotope discrimination, transpiration, stomatal conductance, leaf temperature and yield, controlling 4-23 % of the phenotypic variation. A QTL hotspot was identified on chromosome 8 that controlled carbon isotope discrimination, stomatal conductance and yield under drought. Several promising candidate genes in this region were associated with WUE, including aquaporins, late embryogenesis abundant proteins, an abscisic acid-responsive element binding protein and glutathione S-transferases involved in redox homeostasis following drought stress were also identified.
For the first time, we have characterised the genetic basis of WUE of lettuce, a commercially important and water demanding crop. We have identified promising candidate genomic regions determining WUE and yield under well-watered and water-limiting conditions, providing important pre-breeding data for future lettuce selection and breeding where water productivity will be a key target.
供水限制了许多作物的农业生产力,包括生菜。确定作物品种中能够在减少供水的情况下保持生产力的品种是一项重大挑战,但对于开发适应未来水资源有限气候的具有弹性的作物至关重要。我们研究了与生菜(一种全球重要的叶菜类沙拉作物)的水分利用效率(WUE)和产量相关的已知性状,该生菜是由栽培的生菜(Lactuca sativa L. cv. Salinas)和其野生祖先生菜(L. serriola L.)杂交产生的重组自交系(RIL)生菜作图群体中进行的。
野生和栽培生菜在 WUE 方面存在差异,我们在 RIL 中观察到产量和用水性状的超亲分离。数量性状位点(QTL)分析确定了在充分供水和干旱条件下控制这些性状的基因组区域。在染色体 8 上检测到控制碳同位素分馏、蒸腾、气孔导度、叶片温度和产量的 QTL,控制了 4-23%的表型变异。在干旱条件下,在染色体 8 上鉴定到一个控制碳同位素分馏、气孔导度和产量的 QTL 热点。该区域的几个有前途的候选基因与 WUE 相关,包括水通道蛋白、晚期胚胎丰富蛋白、ABA 响应元件结合蛋白和参与干旱胁迫后氧化还原稳态的谷胱甘肽 S-转移酶。
我们首次对生菜的 WUE 遗传基础进行了描述,生菜是一种商业上重要且需水量大的作物。我们已经确定了在充分供水和水分限制条件下决定 WUE 和产量的有前途的候选基因组区域,为未来的生菜选择和选育提供了重要的预繁殖数据,在未来的选育中,水生产力将是一个关键目标。