Suppr超能文献

可持续生物能源以减缓气候变化:培育耐旱树种和草种。

Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses.

机构信息

School of Biological Sciences, University of Southampton, Southampton, UK.

Department of Plant Sciences, University of California at Davis, Davis, CA, USA.

出版信息

Ann Bot. 2019 Oct 29;124(4):513-520. doi: 10.1093/aob/mcz146.

Abstract

BACKGROUND AND AIMS

Bioenergy crops are central to climate mitigation strategies that utilize biogenic carbon, such as BECCS (bioenergy with carbon capture and storage), alongside the use of biomass for heat, power, liquid fuels and, in the future, biorefining to chemicals. Several promising lignocellulosic crops are emerging that have no food role - fast-growing trees and grasses - but are well suited as bioenergy feedstocks, including Populus, Salix, Arundo, Miscanthus, Panicum and Sorghum.

SCOPE

These promising crops remain largely undomesticated and, until recently, have had limited germplasm resources. In order to avoid competition with food crops for land and nature conservation, it is likely that future bioenergy crops will be grown on marginal land that is not needed for food production and is of poor quality and subject to drought stress. Thus, here we define an ideotype for drought tolerance that will enable biomass production to be maintained in the face of moderate drought stress. This includes traits that can readily be measured in wide populations of several hundred unique genotypes for genome-wide association studies, alongside traits that are informative but can only easily be assessed in limited numbers or training populations that may be more suitable for genomic selection. Phenotyping, not genotyping, is now the major bottleneck for progress, since in all lignocellulosic crops studied extensive use has been made of next-generation sequencing such that several thousand markers are now available and populations are emerging that will enable rapid progress for drought-tolerance breeding. The emergence of novel technologies for targeted genotyping by sequencing are particularly welcome. Genome editing has already been demonstrated for Populus and offers significant potential for rapid deployment of drought-tolerant crops through manipulation of ABA receptors, as demonstrated in Arabidopsis, with other gene targets yet to be tested.

CONCLUSIONS

Bioenergy is predicted to be the fastest-developing renewable energy over the coming decade and significant investment over the past decade has been made in developing genomic resources and in collecting wild germplasm from within the natural ranges of several tree and grass crops. Harnessing these resources for climate-resilient crops for the future remains a challenge but one that is likely to be successful.

摘要

背景与目的

生物能源作物是利用生物源碳的气候缓解策略的核心,例如 BECCS(生物能源与碳捕获和储存),以及生物质用于热能、电力、液体燃料,并且在未来,生物炼制用于化学品。几种有前途的木质纤维素作物正在出现,它们没有食物作用——快速生长的树木和草类——但非常适合作为生物能源饲料,包括杨树、柳树、芦竹、芒草、柳枝稷和高粱。

范围

这些有前途的作物在很大程度上仍然未经驯化,直到最近,它们的种质资源有限。为了避免与粮食作物争夺土地和自然保护,未来的生物能源作物可能会种植在不需要用于粮食生产的边缘土地上,这些土地质量差,容易受到干旱胁迫。因此,在这里,我们定义了一个耐旱理想型,以确保在中度干旱胁迫下维持生物质生产。这包括在数百个独特基因型的广泛群体中易于测量的性状,以及信息丰富但只能在有限数量或可能更适合基因组选择的训练群体中评估的性状。表型分析,而不是基因型分析,现在是取得进展的主要瓶颈,因为在所有研究的木质纤维素作物中,已经广泛使用下一代测序,因此现在有几千个标记,并且正在出现能够实现耐旱性育种快速进展的群体。针对目标基因分型的新型测序技术的出现尤其受欢迎。基因组编辑已经在杨树中得到证实,并通过操纵 ABA 受体为耐旱作物的快速部署提供了巨大潜力,如在拟南芥中所示,其他基因靶标仍有待测试。

结论

生物能源预计将在未来十年成为发展最快的可再生能源,在过去十年中,已经在开发基因组资源和收集几种树木和草类作物的野生种质资源方面进行了大量投资。利用这些资源为未来具有气候适应性的作物仍然是一个挑战,但很可能会成功。

相似文献

1
4
Molecular Breeding for Improved Second Generation Bioenergy Crops.
Trends Plant Sci. 2016 Jan;21(1):43-54. doi: 10.1016/j.tplants.2015.10.002. Epub 2015 Nov 2.
5
Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications.
Int J Mol Sci. 2023 Sep 26;24(19):14549. doi: 10.3390/ijms241914549.
9
Climate-resilient crops: Lessons from xerophytes.
Plant J. 2024 Mar;117(6):1815-1835. doi: 10.1111/tpj.16549. Epub 2023 Nov 15.
10
Millet as a promising C4 model crop for sustainable biofuel production.
J Biotechnol. 2024 Nov 20;395:110-121. doi: 10.1016/j.jbiotec.2024.09.019. Epub 2024 Sep 28.

引用本文的文献

1
Climate adaptation in Populus trichocarpa: key adaptive loci identified for stomata and leaf traits.
New Phytol. 2025 Sep;247(6):2647-2664. doi: 10.1111/nph.70343. Epub 2025 Jul 29.
2
3
Advances in lignocellulosic feedstocks for bioenergy and bioproducts.
Nat Commun. 2025 Feb 1;16(1):1244. doi: 10.1038/s41467-025-56472-y.
4
Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in .
Plant Phenomics. 2023 Jul 28;5:0072. doi: 10.34133/plantphenomics.0072. eCollection 2023.
7
The genetic basis of water-use efficiency and yield in lettuce.
BMC Plant Biol. 2021 May 27;21(1):237. doi: 10.1186/s12870-021-02987-7.
9
Enhancing the expression of genes in poplar leads to multiple branches and transcriptomic changes.
R Soc Open Sci. 2020 Sep 9;7(9):201201. doi: 10.1098/rsos.201201. eCollection 2020 Sep.
10
MiR156 regulates anthocyanin biosynthesis through targets and other microRNAs in poplar.
Hortic Res. 2020 Aug 1;7:118. doi: 10.1038/s41438-020-00341-w. eCollection 2020.

本文引用的文献

1
Phenotyping for drought tolerance in grain crops: when is it useful to breeders?
Funct Plant Biol. 2012 Nov;39(11):851-859. doi: 10.1071/FP12079.
3
The global tree restoration potential.
Science. 2019 Jul 5;365(6448):76-79. doi: 10.1126/science.aax0848.
6
Abscisic acid signalling mediates biomass trade-off and allocation in poplar.
New Phytol. 2019 Aug;223(3):1192-1203. doi: 10.1111/nph.15878. Epub 2019 Jun 3.
7
10
Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World.
Front Plant Sci. 2019 Mar 6;10:225. doi: 10.3389/fpls.2019.00225. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验