Department of Biology, University of York, York, UK.
Department of Horticulture, Shenyang Agricultural University, Shenyang, China.
Nat Plants. 2021 Jun;7(6):757-765. doi: 10.1038/s41477-021-00928-8. Epub 2021 May 27.
The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids.
栽培的芸薹属物种包括许多具有全球重要性的蔬菜和油料作物。三个基因组(命名为 A、B 和 C)具有中间六倍体的共同祖先,并且单独出现或两两组合出现,从而定义了芸薹属物种。在纠正了组织错误(例如基因组片段错位)后,我们表明,每个基因组的基本结构都是相同的,而与它所在的物种无关。这使我们能够阐明基因组的进化途径,包括更新始祖十字花科核型(ACK)块组织,并为芸薹属中间六倍体通过两步过程发生提供支持。然后,我们构建了全属泛基因组,从各自基因组出现的任何物种中的基因中提取,这使我们能够为栽培的芸薹属物种提供一个全球基因命名系统,并开发出一种经济有效地阐明外来渐渗影响的方法。我们的进展不仅为基于知识的更高效芸薹属作物育种方法提供了支持,也为其他多倍体的研究提供了范例。