Causeret Frédéric, Moreau Matthieu X, Pierani Alessandra, Blanquie Oriane
Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.
Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.
Development. 2021 Jun 1;148(11). doi: 10.1242/dev.199409. Epub 2021 May 28.
Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.
卡哈尔-雷茨神经元(CRs)是爬行动物、鸟类和哺乳动物(包括人类)发育中的皮质中最早生成的神经元之一。CRs的独特之处在于,它们最初嵌入未成熟的神经网络,然后在皮质发育结束时几乎完全通过细胞死亡被清除。CRs最为人所知的是通过分泌糖蛋白reelin来控制谷氨酸能神经元的迁移和皮质层的形成。然而,研究表明它们在皮质发育的许多阶段发挥着许多其他关键作用,从功能区域的模式化和大小确定到突触形成。遗传谱系追踪技术的应用使人们发现了它们的多种个体发生起源、迁移途径、分子标记表达和死亡动态。如今,单细胞技术使我们能够以前所未有的分辨率认识到CRs的分子异质性。在这篇综述中,我们讨论了用于识别CRs的形态学、电生理学、分子和遗传学标准。我们进一步阐述了CRs的各种来源、迁移轨迹、发育功能和死亡动态。最后,我们展示了如何通过对公共转录组数据集的分析来提取CRs在其短暂生命周期中的分子特征,并考虑它们在物种内部和物种之间的异质性。