Suppr超能文献

评估中的措辞效应:只见树木,不见森林。

Wording Effects in Assessment: Missing the Trees for the Forest.

机构信息

Escuela de Psicología, Pontificia Universidad Católica de Chile.

Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Facultad de Psicología, Universidad de Salamanca.

出版信息

Multivariate Behav Res. 2022 Sep-Oct;57(5):718-734. doi: 10.1080/00273171.2021.1925075. Epub 2021 May 28.

Abstract

This article examines wording effects when positive and negative worded items are included in psychological assessment. Wordings effects have been analyzed in the literature using statistical approaches based on population homogeneity assumptions (i.e. CFA, SEM), commonly adopting the bifactor model to separate trait variance and wording effects. This article presents an alternative approach by explicitly modeling population heterogeneity through a latent profile model, based on the idea that a subset of individuals exhibits wording effects. This kind of mixture model allows simultaneously to classify respondents, substantively characterize the differences in their response profiles, and report respondents' results in a comparable manner. Using the Rosenberg's self-esteem scale data from the LISS Panel ( = 6,762) in three studies, we identify a subgroup of participants who respond differentially according to item-wording and examine the impact of its responses in the estimation of the RSES measurement model, in terms of global and individual fit, under one-factor and bifactor models.The results of these analyses support the interpretation of wording effects in terms of a theoretically-proposed differential pattern of response to positively and negatively worded items, introducing a valuable tool for examining the artifactual or substantive interpretations of such wording effects.

摘要

本文探讨了在心理评估中包含正向和负向表述项目时的措辞效应。措辞效应已在文献中使用基于群体同质性假设的统计方法(即 CFA、SEM)进行了分析,通常采用双因素模型来分离特质方差和措辞效应。本文通过基于群体异质性的潜在剖面模型提供了一种替代方法,该模型基于这样一种观点,即一部分个体表现出措辞效应。这种混合模型允许同时对受访者进行分类,从实质上描述他们在反应模式上的差异,并以可比的方式报告受访者的结果。在三项研究中,我们使用 LISS 面板(n=6762)的罗森伯格自尊量表数据,识别出根据项目措辞反应不同的参与者亚组,并根据单因素和双因素模型,检查其反应对 RSES 测量模型的估计在整体和个体拟合方面的影响。这些分析的结果支持了根据正向和负向表述项目的理论上提出的不同反应模式来解释措辞效应的解释,为检验这种措辞效应的人为或实质性解释提供了有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验