Suppr超能文献

基于散射矩阵的超声缺陷特征描述:贝叶斯反演和机器学习方案的性能比较研究。

Ultrasonic Defect Characterization Using the Scattering Matrix: A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Oct;68(10):3143-3155. doi: 10.1109/TUFFC.2021.3084798. Epub 2021 Sep 27.

Abstract

Accurate defect characterization is desirable in the ultrasonic nondestructive evaluation as it can provide quantitative information about the defect type and geometry. For defect characterization using ultrasonic arrays, high-resolution images can provide the size and type information if a defect is relatively large. However, the performance of image-based characterization becomes poor for small defects that are comparable to the wavelength. An alternative approach is to extract the far-field scattering coefficient matrix from the array data and use it for characterization. Defect characterization can be performed based on a scattering matrix database that consists of the scattering matrices of idealized defects with varying parameters. In this article, the problem of characterizing small surface-breaking notches is studied using two different approaches. The first approach is based on the introduction of a general coherent noise model, and it performs characterization within the Bayesian framework. The second approach relies on a supervised machine learning (ML) schema based on a scattering matrix database, which is used as the training set to fit the ML model exploited for the characterization task. It is shown that convolutional neural networks (CNNs) can achieve the best characterization accuracy among the considered ML approaches, and they give similar characterization uncertainty to that of the Bayesian approach if a notch is favorably oriented. The performance of both approaches varied for unfavorably oriented notches, and the ML approach tends to give results with higher variance and lower biases.

摘要

在超声无损评估中,准确的缺陷特征描述是很有必要的,因为它可以提供有关缺陷类型和形状的定量信息。对于使用超声阵列的缺陷特征描述,如果缺陷相对较大,则高分辨率图像可以提供尺寸和类型信息。然而,对于与波长相当的小缺陷,基于图像的特征描述性能会变差。另一种方法是从阵列数据中提取远场散射系数矩阵,并将其用于特征描述。缺陷特征描述可以基于由具有变化参数的理想化缺陷的散射矩阵组成的散射矩阵数据库来执行。在本文中,使用两种不同的方法研究了小表面穿透缺口的特征描述问题。第一种方法基于引入一般相干噪声模型,并在贝叶斯框架内执行特征描述。第二种方法依赖于基于散射矩阵数据库的监督机器学习 (ML) 方案,该方案用作训练集,以拟合用于特征描述任务的 ML 模型。结果表明,在考虑的 ML 方法中,卷积神经网络 (CNN) 可以实现最佳的特征描述准确性,如果缺口有利地取向,则它们给出的特征描述不确定性与贝叶斯方法相似。这两种方法的性能对于不利取向的缺口都有所不同,并且 ML 方法往往会给出具有更高方差和更低偏差的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验