Suppr超能文献

基于深度卷积神经网络的常规 T2 加权自旋回波脑磁共振图像脑龄预测。

Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network.

机构信息

Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.

Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.

出版信息

Neurobiol Aging. 2021 Sep;105:78-85. doi: 10.1016/j.neurobiolaging.2021.04.015. Epub 2021 Apr 28.

Abstract

Our study investigated the feasibility and clinical relevance of brain age prediction using axial T2-weighted images (T2-WIs) with a deep convolutional neural network (CNN) algorithm. The CNN model was trained by 1,530 scans in our institution. The performance was evaluated by the mean absolute error (MAE) between the predicted brain age and the chronological age based on an internal test set (n=270) and an external test set (n=560). The ensemble CNN model showed an MAE of 4.22 years in the internal test set and 9.96 years in the external test set. Participants with grade 2-3 white matter hyperintensity (WMH) showed a higher corrected predicted age difference (PAD) than grade 0 WMH (posthoc p<0.001). Participants diagnosed with diabetes mellitus also had a higher corrected PAD than those without diabetes (adjusted p=0.048), although it showed no significant differences according to the diagnosis of hypertension or dyslipidemia. We suggest that routine clinical T2-WIs are feasible to predict brain age, and it might be clinically relevant according to the WMH grade and the presence of diabetes mellitus.

摘要

我们的研究旨在探讨使用深度卷积神经网络(CNN)算法基于轴向 T2 加权图像(T2-WI)预测脑龄的可行性和临床相关性。该 CNN 模型通过我们机构的 1530 次扫描进行训练。通过内部测试集(n=270)和外部测试集(n=560)评估模型的性能,通过预测脑龄与实际年龄之间的平均绝对误差(MAE)进行评估。整体 CNN 模型在内部测试集和外部测试集的 MAE 分别为 4.22 年和 9.96 年。患有 2-3 级脑白质高信号(WMH)的患者比 0 级 WMH 的校正预测年龄差异(PAD)更高(事后 p<0.001)。与没有糖尿病的患者相比,被诊断为糖尿病的患者的校正 PAD 也更高(调整后 p=0.048),尽管根据高血压或血脂异常的诊断,这一差异并不显著。我们认为常规临床 T2-WI 可用于预测脑龄,并且根据 WMH 分级和糖尿病的存在,其可能具有临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验