用于改进 3D FLAIR 图像中脑白质高信号检测的三维正交深度学习卷积神经网络的堆叠泛化。

A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.

机构信息

From the Departments of Electrical and Computer Engineering (L.U., A.B.).

Medical Imaging (L.U., G.G.P.-C., M.B.K., J.A.R.-T., M.I.A., B.W., A.B.).

出版信息

AJNR Am J Neuroradiol. 2021 Apr;42(4):639-647. doi: 10.3174/ajnr.A6970. Epub 2021 Feb 11.

Abstract

BACKGROUND AND PURPOSE

Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.

MATERIALS AND METHODS

Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR ( = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort ( = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer's Disease Neuroimaging Initiative-3 ( = 20).

RESULTS

StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ ( = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference ( = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.

CONCLUSIONS

A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

摘要

背景与目的

准确可靠地检测脑白质高信号及其体积定量分析可为评估神经退行性疾病的进展提供有价值的临床信息。本研究中,我们探索了一种堆叠式正交 3D 卷积神经网络集成方法(StackGen-Net),用于提高 3D-FLAIR 图像中脑白质高信号的自动检测能力。

材料与方法

StackGen-Net 中的个体卷积神经网络通过对 3D-FLAIR 图像的正交重建成 2.5D 图像块进行训练,以生成脑白质高信号后验概率。然后,通过训练一个元卷积神经网络来学习从正交脑白质高信号后验概率到最终脑白质高信号预测的功能映射。我们系统地评估了训练数据和架构选择对测试队列(n = 9)中脑白质高信号分割性能的影响。然后,我们将 StackGen-Net 的分割性能与来自阿尔茨海默病神经影像学倡议-3(ADNI-3)的独立测试队列中的最新卷积神经网络技术(n = 20)进行了比较。

结果

StackGen-Net 在集成和使用平均值或多数投票的组合中优于个体卷积神经网络。与最新的脑白质高信号分割技术相比,StackGen-Net 获得了更高的 Dice 评分(0.76[SD,0.08])、F1-lesion(0.74[SD,0.13])和精度-召回曲线下面积(0.84[SD,0.09]),以及更低的绝对体积差异(13.3%[SD,9.1%])。StackGen-Net 的 Dice 评分中位数(0.74)与两位经验丰富的神经放射学家之间的观察者间变异性中位数(0.73)无显著差异(P =.22)。我们还发现,StackGen-Net 预测的脑白质高信号病变体积与地面真实标注之间没有显著差异(P =.15)。

结论

利用 2.5D 空间上下文的多平面病变信息的卷积神经网络堆叠式泛化极大地提高了 StackGen-Net 的分割性能,与传统的集成技术和一些最新的深度学习模型相比,StackGen-Net 对 3D-FLAIR 图像具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索