Zhou Yue, Zheng Lirong, Yang Deren, Yang Haozhou, Wang Xun
Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2021 Jul;33(27):e2101886. doi: 10.1002/adma.202101886. Epub 2021 May 28.
Introducing an external light field can increase the intrinsic activity and energy efficiency for electrochemical CO reduction. Herein, a synergistic strategy that introduces photosensitive components and visible light into a stable system is reported to improve the performance for CO reduction. The catalytic kinetics studies indicate that the synergistic effect of implantation of cationic Ti and additional light driving is the primary responsibility for accelerating the first electron transfer to form a *COO intermediate. This leads to a satisfactory CO -to-CO conversion for Zr/Ti-NB-Co in terms of high selectivity (Faradaic efficiency of 93.6% at -0.7 V), remarkable catalytic activity (production rate up to 546 mmol g h at -1.1 V), excellent long-term stability (without performance decay over 11 h), and large turnover frequency of 1028 h at -1.1 V under visible light. These results imply that the photodriven Ti-based porphyrin catalyst not only can deliver more electrons, but also can act as a photoswitch to adjust the electron transfer pathway.
引入外部光场可以提高电化学CO还原的本征活性和能量效率。在此,报道了一种将光敏成分和可见光引入稳定体系的协同策略,以提高CO还原性能。催化动力学研究表明,阳离子Ti的植入和额外光驱动的协同效应是加速首次电子转移以形成*COO中间体的主要原因。这使得Zr/Ti-NB-Co在CO转化方面表现令人满意,具有高选择性(在-0.7 V时法拉第效率为93.6%)、显著的催化活性(在-1.1 V时产率高达546 mmol g⁻¹ h⁻¹)、出色的长期稳定性(在11 h内性能无衰减)以及在可见光下-1.1 V时1028 h⁻¹的大周转频率。这些结果表明,光驱动的钛基卟啉催化剂不仅可以提供更多电子,还可以作为光开关来调节电子转移途径。